
EXPLORING EMBEDDED SYSTEMS’ DEDICATED CORES FOR
REAL-TIME APPLICATIONS

P. H. Nallin†, R. C. Ito, J. G. R. S. Franco, A. R. D. Rodrigues
Brazilian Synchrotron Light Laboratory, Campinas, Brazil

Abstract
Developments and research in high technology leads to

powerful and sophisticated machines which are highly im-
portant for many scientific fields. Considering real-time
applications, however, these systems tend to become non-
deterministic and users may find themselves inside a not
completely controllable environment. Exploring open-
hardware single board computers with a system-on-a-chip
which usually runs an operational system on their main
processor(s) and also have real-time units is a good alter-
native. These real-time units are designed as a microcon-
troller embedded on the chip where a firmware is loaded,
runs concomitantly and exchanges data with the main sys-
tem. As a result, it is possible to achieve performance in-
crease, high temporal resolution and low latency and jitter,
features that are widely desired for controls and critical
data acquisition systems. This system architecture allows
moving real-time data into high level servers, such as Redis
(Remote Dictionary Server) and EPICS, easily. This paper
introduces and shows uses of Beaglebone Black, an inex-
pensive single-board computer, its Programmable Real-
Time Units (PRUs) and data sharing with Redis data struc-
ture.

INTRODUCTION
Designing a new 3 GeV and ultra-low emittance syn-

chrotron machine, brings along many technological chal-
lenges. In the case of controls systems, it impacts on con-
trolling and monitoring a large variety of equipment, in-
cluding the ones that are very accurate and/or critical to
light generating. As a solution for both deterministic and
general controls, it has been chosen to use an open hard-
ware single board computer, Beaglebone Black [1], which
comes with two embedded Programmable Real-Time
Units (PRUs). Running on an embedded linux environ-
ment, applications have fast hardware access and are inte-
grated to Controls System network. Sirius, the future
fourth-generation Brazilian Light Source, comes to the fi-
nal phase of systems installations for machine engineering.
Among them, there are some designed by Controls Group
using the Beaglebone Blacks and Programmable Real-
Time Units.

USE OF BEAGLEBONE BLACK IN
BRAZILIAN LIGHT SOURCES

UVX Facility
Regarding controls system upgrades in UVX facility, the

pioneer Brazilian light source, it is remarkable when first

CPUs (Z80 and eZ80) were replaced by a commercial fan-
less single board computer, Advantech PCM-4153F, in
2010, increasing reliability and ease of maintenance.

In the beginning of 2016, the first Beaglebone Black sin-
gle board computers were introduced to UVX facility con-
trols system, in order to replace older CPU generations [2],
either because of electronic components unavailability or
outdated equipment. Already intended to be used in Sirius
accelerator, it has also been a great bench test for Beagle-
bone’s embedded system.

Since then, running a Debian Linux distribution, it has
been detected only one issue concerning hardware/soft-
ware operation, a possible freezing after a warm reboot,
which was corrected in a newer kernel version.

Sirius
Chosen to be the main distributed core in Sirius controls

systems, as shown in Fig. 1, there will be more than
350 units running full-time in Sirius applications, such as
vacuum system monitoring, power supplies, pulsed power
electronics control and temperature acquisition. The choice
was made considering its performance, low cost and open
hardware project.

Figure 1: Sirius Controls System simple layout, consider-
ing distributed cores.

However, some of applications have requirements to be
performed in real-time systems for several reasons. High
amount of data transfer, synchronized operations, low jitter
and great time accuracy and determinism.

PROGRAMMABLE REAL TIME UNITS
Beaglebone Black is based on a System on a Chip (SoC)

AM335x family, designed and manufactured by Texas In-
struments. As subsystems, it has two independent real-time

 __

† patricia.nallin@lnls.br

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR003

WEMPR003
1036

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

modules, called PRUs (Programmable Real-Time Units),
whose block diagram can be described in Fig. 2.

Figure 2: Texas Instruments’ PRU subsystem (http://pro-
cessors.wiki.ti.com/index.php/PRU-ICSS).

Running on a 200 MHz clock, these 32-bit RISC cores
are able to implement tasks with elevated real-time con-
straints. and they have multiple features:
 8 KB instruction memory
 8 KB data memory
 12 KB shared RAM between PRUs and system main

core
 Interrupt controller
 Access to some Beaglebone’s GPIOs

As an execution model, no pipelining is implemented,
which leads to well-known instructions execution time.
Multiple addressing modes are available and the reduced
instruction set can be divided into three main categories:
flow control, arithmetic/logical operation and register data
load/store.

Assembly Coding
Despite the effort that must initially be taken, assembly

coding leads to a better and deterministic performance of
the system. The assembler designed to compile the code is
PASM Tool, developed by Texas Instruments, which builds
the needed binary file to be loaded into PRUs.

Some available resources increase assembly code devel-
opment for PRUs and future maintenances. It is possible to
have a header file, macro and structure definitions, for ex-
ample.

C/C++ Coding
Writing source codes in C/C++ language for PRUs is an

alternative. A compiler is available through Code Com-
poser Studio (CCS), the Integrated Development Environ-
ment provided by Texas Instruments. Even though code
writing is faster and optimization options are provided,
system responses may be very different compared to as-
sembly coding. The final application and requirements will
determine whether C/C++ may be used to achieve desired
performance.

Carrier Library
Loading built binary outputs into a PRU and executing

an application is also an important step. This is done in us-
erspace level of operating system and consists basically on
writing values to specific regions of processor memory.

A C library called libprussdrv [3] can be used as a driver
to PRUs, such as mapping memories, writing or reading
from it, receive and send interrupts between systems.

GPIO Access
Machine controlling interfaces always require hardware

control and access. General purpose I/Os directly accessed
by PRUs operate at 3.3 V and have 3.08 ns rise and 2.64 ns
fall time.

Additionally, compared to high level userspace GPIO
access, controlling these signals through PRU subsystem
has a faster response and toggling time can be easily han-
dled by the user.

Applications in Sirius Light Source
Programmable Real-Time units will be used in some

controls subsystems where time constraints are tight. Aim-
ing three different tasks, projects developed are described
in further sections.

HIGH-PERFORMANCE
SERIAL INTERFACE

The first and largest application considering Beaglebone
Black’s PRU is an interface for fast serial communication,
which can reach data rates up to 15 Mbps, named
PRUserial485.

Motivation
As a 4th-generation light source, Sirius has been designed

to have equipment with great stability and reliability. As
modularity is present, it is also important to guarantee that
synchronous operations are performed with lowest time
difference between systems.

This system has been designed mainly for Sirius’ power
supplies [4], which are digitally controlled at 6 Mbps.
Communication is based on a proprietary and light-
weighted protocol, named Basic Small Message Protocol
(BSMP), along with a deterministic hardware and software
interface.

This leads, for example, to the synchronized execution
of current ramps to increase beam energy at booster accel-
erator.

Hardware Interface
PRU systems already have a serial module (UART).

However, configuring high baud rates is limited. For this
reason, it has been chosen to use an external UART,
MAX3107, controlled through SPI interface.

The baseboard designed for this application is a multi-
serial cape, with PRU complementary hardware and other
features (standard FTDI, interface SPIxxCON [5] and a
hard-reset module). Serial communication physical layer is

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR003

Device Control and Integrating Diverse Systems
WEMPR003

1037

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

based on RS-485 standard, where communication chain
can reach up to 10 m cable length at 10 Mbps.

PRU external hardware, shown in Fig. 3, is quite simple
and composed of the external UART (MAX3107 IC), iso-
lated RS-485 transceiver (IL3685 IC), transmission line
fail-safe and termination resistors, DC/DC converter
(DCR010505 IC) and an electrical and optical inputs for
timing system (synchronized operations).

Figure 3: Hardware integration for the high-performance
serial controller.

Transmission line termination resistors are manually en-
abled. The external UART and timing inputs are directly
attached to PRU pins, once they will be controlled and used
by it.

AM335x Memory Mapping
Data sharing between PRUs and userspace environment

is always performed by shared memory access (Fig. 4).
Considering PRUs’ shared RAM, some bytes are re-

served for device configuring values and data flow control.
Yet, 5 KB are reserved for serial sending and 5 KB for se-
rial reading, allowing large amount of data transfer at one
time with no delay between bytes.

Larger data arrays can be stored in a reserved region of
external on-board DDR memory, defined by blocks 0 to 3,
which can be accessed by both main core and PRUs
through memory mapping. It was designed especially for
ramping power supplies, where points may be continually
sent to their controllers, as reference setpoints. Each cur-
rent value is represented by a floating point, i.e., a 4-byte
variable.

Figure 4: Memory mapping for PRUserial485 application.

Coding
Coding for this application can be divided into three dif-

ferent and linked process:
 PRU assembly firmware
 C library for PRU configuring and memory transfers
 Python user interface
Assembly language has been chosen in order to have

high performance and process repeatability. Macros and
subroutines were written to ease code development. At
starting, external UART is configured and PRU enters in
normal operation mode, where idle state is waiting for user
data to be sent through serial network and wait for a re-
sponse from destination. Synchronous operation is the sec-
ond mode available, making PRU and serial network ded-
icated to timing input signals.

A C library was developed to load code into PRU and
interact with it. There are 15 functions available at the mo-
ment, that can be grouped into general purpose (open,
close, data write, data read, board address), curves han-
dling (load curve, set/read current curve block, set/read
current curve pointer) and sync operation (start, stop, sta-
tus, read/clear pulse count). This library is compiled and
installed into Beaglebone Black.

Getting to higher interfaces, a Python module has also
been developed, using ctypes, contemplating all the
15 functions. This module is also installed to operational
system.

Synchronous Operation Mode
Sirius power supplies must perform synchronized ad-

justs during booster ramping, orbit correction, magnets cy-
cling and migration mode. For booster energy ramping, for
example, curves with 3920 points must be run at 2 Hz. For
that purpose, a PRU serial mode was implemented to de-
liver serial messages with low jitter to power supplies’ con-
trollers. Concerning serial network, there are two main
sync modes: after a triggering a timing pulse, PRU inter-
face sends through RS-485:

1. Broadcast command
2. Command addressed to a specific device

When sync mode is enabled, PRU is completely dedi-
cated to receiving timing signals, polling a GPIO.

In the first model, after receiving a timing pulse, serial
interface sends a broadcast message to all devices in the
line. Final action depends on how the power supply is con-
figured: it could be a setpoint implementation or start of a
magnet cycling, for example.

The second one sends a sequence of setpoints each time
a timing pulse is received, following ramp curves that user
has loaded previously. Ramp curves are stored in DDR
memory and they are subdivided into four different groups.
A group is composed of four curves of up to 6250 points
(4-byte floating points) each.

In this case, it is possible to changes curves on-the-fly by
loading them into a different block as well as changing
pointer for next point of curve in execution. Also, two more
parameters should be configured: execute curve once or

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR003

WEMPR003
1038

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

multiple times and intercalate normal write/read messages
between timing commands or only after the last curve
point.

The two modes have different latency, smaller than two
bytes-time yet. However, message jitter after a timing sig-
nal is quite reasonable. Values are shown in Table 1. After
sending a sync serial message, the interface requires a re-
covery time of 3.1 µs before polling the next pulse.

Table 1: Characterization of Different Serial Message
Types that are Sent after Detecting a Sync Trigger

PRU
sync command

Message size
[bytes]

Latency
[µs]

Jitter
[ns]

Broadcast 6 1.011 13.44

Single setpoint adjust 10 1.438 52.73

Four setpoints adjust 22 2.188 82.43

As expected, the case of a broadcast command shows a

lower jitter once data is stored directly in shared RAM in-
stead of DDR memory, which is external to the SoC.

Current Status and Next Steps
Several tests were made with this high-performance se-

rial communication and reliability has been demonstrated
to be elevated. The possibility of changing curves on-the-
fly is a flexibility that allow accelerator physicists improve
mainly machine commissioning.

As an upgrade, it has been planned to use the second
PRU unit to increase reliability concerning eventual lost
timing pulses.

MULTI-PURPOSE COUNTING SYSTEM
A general-purpose counting system is very modular and

can be used in many applications concerning accelerators
or beamlines.

Motivation
Some diagnostics devices in Sirius accelerators present

a readable signal output as pulse trains. Counting the
amount of pulses received in a time-based period gives
some quantitative or qualitative results, depending on the
application.

By the moment, two devices have been used and they
respond with pulses: Beam Loss Monitors (BLM - differ-
ential model), from Bergoz, and in-house developed
gamma detectors. Maximum pulse rate is 10 MHz for
BLMs and 1 MHz for gamma detectors.

Hardware Interface
Being the first Controls Group project to be built with

Power over Ethernet (PoE) interface, hardware interface is
easily powered and accessed with only one network cable.
Also, it has an analog-to-digital driver for differential Ber-
goz interface as well as power levels required for both de-
vices. The baseboard has been designed for controlling two
Bergoz units and six general-purpose digital HCT chan-
nels, which are used with Sirius Gamma Detector (Fig. 5).

Digital hardware is based on digital latches that can de-
tect fast rising edges. Their output and reset signals are di-
rectly connected to PRU GPIOs.

Figure 5: Hardware interface for general-purpose counting
system.

Coding and Memory Mapping
Compared to the high-performance serial communica-

tion, this application is simpler and do not have a very re-
stricted time constraint. For starting, stopping counters and
share final 32-bit count results with Linux users, PRU
shared RAM is used. Developing PRU applications leads
to the same linked process:
 PRU assembly firmware
 C library for PRU configuring and memory transfers
 Python user interface

PRU firmware was first written in C, achieving maxi-
mum count rate at 4 MHz for one active channel. An as-
sembly version was also written to compare performance
and it is faster (table 2). Having a total of eight independent
channels, each programmable unit controls four of them.

The C library has three implemented functions:
open/close PRU application and counting for a time period.
This is also mapped to Python using ctypes and both lan-
guage libraries are installed to Beaglebone’s operational
system.

Maximum counting rates depend on the number of ac-
tive channels per PRU.

Table 2: Maximum Counting Rates

Active channels Max count rate [MHz]
1 14.29
2 12.50
3 11.11
4 10.00

Current Status and Next Steps
PRU-based counting system had UVX facility as its

bench test for BLMs and eight units have already been used
in initial beam tests in Sirius booster.

Concerning gamma detectors and counting system, they
have been under tests with successful results and will be
permanently installed soon in Sirius storage ring, adding
around 60 Beaglebone Blacks to controls system network.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR003

Device Control and Integrating Diverse Systems
WEMPR003

1039

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

WATER LEAK DETECTOR
This project, which is currently in final development

phase, has the goal of detecting water leaks along some
structures of Sirius accelerators.

Motivations and Hardware Interface
When Sirius is under operation, the tunnel is inaccessi-

ble and thus it will be no longer possible to monitor hy-
draulic connections and hoses. Yet, some small leaks may
not be detected easily. For that purpose, a water leak detec-
tor has been designed and is based on the principle of signal
reflexion on a coaxial mismatched transmission line,
caused by a few millilitres of water absorbed by a capaci-
tive sensor.

Initially, all Sirius’ girders will be monitored, where off-
set from one another is 5 m. The baseboard includes a Bea-
glebone Black and an analog conditioning electronics cir-
cuitry. Triggering pulse is controlled by PRU and reflected
one is attached to another PRU GPIO (Fig. 6).

Figure 6: Hardware interface for general-purpose counting
system.

Distance measurements, concerning signal velocity of
propagation through a coaxial cable, have maximum errors
of 1.22 m, which means 0.61 m one-way maximum error
distance.

Future Developments
It is intended to manufacture all capacitive sensors in

next months and integrate this application to controls sys-
tem as soon as possible, once water cooling installations
are almost finished.

EPICS AND REDIS INTERFACE
A very interesting feature of using Beaglebone’s PRUs

is that user is already inside an embedded linux. Having the
possibility of developing real-time applications in such en-
vironment makes system integration easier, cleaner and
time saving.

Once PRUs may be controlled either through a Python
module or a C library, from the same SoC userspace, writ-
ing upper-layer codes to interact with them and make in-
formation available to other applications might reduce sys-
tem complexity. Two large important and open source tools
are currently in use in order to share obtained data from
Sirius subsystems.

EPICS
Sirius controls system is EPICS based and its single

board computers are also configured to fully integrate the
network.

The minimal system image stored in Beaglebone Blacks
has the latest stable release EPICS base installed (R3.15)
as well as some other modules, such as asynDriver and
StreamDevice. As consequence, it is possible to run EPICS
IOCs (input/output controllers) directly from each device.

Redis
Redis database, an open source in-memory data structure

store [6], is a tool that has been largely used and in use in
a few applications in LNLS campus since 2014.

Its main application has been demonstrated to be robust
and reliable while running on a Beaglebone Black, which
monitors and controls the campus power generator.

Similarly to EPICS base, Redis server can be easily in-
stalled in the embedded system and interfaced with a Py-
thon module, getting closer to hardware access. The mini-
mal controls system’s embedded image also provides a Re-
dis server installed and enabled, with the goal of improving
current applications. For the moment, all Beaglebone
Blacks have their functionality information stored in a Re-
dis database. The Counting System also stores its counter
values in their embedded Redis server.

CONCLUSION
Even though some applications are not completely run-

ning in-situ yet, Beaglebone Black has been demonstrated
to be a reliable, powerful and cheap solution as a controls
system node.

Having both embedded Linux and a dedicated core in the
same SoC reduces costs and system overall complexity, al-
lowing developers to design time-critical applications with
the advantage of sharing data with largely used tools, such
as EPICS and Redis.

Shown applications have great performances, mainly the
one designed to interface power supplies, the high-perfor-
mance serial interface, which has already passed exhaus-
tive tests and is currently used for booster and subsystems
commissioning. Future improvements are possible and
some are already planned.

REFERENCES
[1] BeagleBone, http://beagleboard.org/bone

[2] S. Lescano, E. P. Coelho, G. R. S. Franco, P. H. Nallin, G. C.
Pinton, and A. R. D. Rodrigues, “UVX Control System: An
Approach with Beaglebone Black”, in Proc. PCaPAC'16,
Campinas, Brazil, Oct. 2016, pp. 91-93.
doi:10.18429/JACoW-PCAPAC2016-THPOPRPO03

[3] AM335x PRU PACKAGE, http://github.com/
beagleboard/am335x_pru_package

[4] C. Rodrigues et al., “Overview of Sirius Power Supply Sys-
tem”, in Proc. 10th Int. Particle Accelerator Conf. (IPAC'19),
Melbourne, Australia, May 2019, pp. 1230-1232.

 doi:10.18429/JACoW-IPAC2019-TUPMP002

[5] G. R. S. Franco et al., “Software and Hardware Design for
Controls Infrastructure at Sirius Light Source”, presented at
the 17th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS'19), New York, NY,
USA, Oct. 2019, paper MOPHA031, this conference.

[6] Redis, https://redis.io/

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR003

WEMPR003
1040

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

