
THE MINISCULE ELT CONTROL SOFTWARE:
 DESIGN,

ARCHITECTURE AND HW INTEGRATION

C. Diaz Cano, N. Kornweibel, R.Abuter, J.Sagatowski, H.Tischer, T.R.Grudzien, European
Organization for Astronomical Research in the Southern Hemisphere (ESO), Garching bei

Muenchen, Germany

Abstract
This paper presents the development of the MELT (Mini

ELT) Control System, to be used for testing and validating
key functionalities of the Extremely Large Telescope
(ELT) during AIV/commissioning and operation phase.
MELT is an optical test bench with a turbulence generator,
whose main objective is to deploy and validate the Central
Control System (CCS) and the Wavefront control strate-
gies. The subsystems under control are: a segmented pri-
mary mirror, a secondary mirror on a hexapod, an adaptive
fourth mirror, a fast tip/tilt mirror, phasing sensor, a light
source, a Wavefront sensor, a IR camera, together with
their control interfaces that emulate the ELT conditions.
The CCS integration layer, the Core Integration Infrastruc-
ture (CII), will be deployed to MELT for their verification
and testing strategy, producing feedback to their require-
ments and design.

This paper describes the Control SW distributed archi-
tecture, communication patterns, user interfaces and SW
infrastructure. The control algorithms are being developed
separately and will be integrated into the control loop via
MATLAB script API.

INTRODUCTION
MELT is a table-top emulator of the ELT (see Fig. 1), the

European Extremely Large Telescope, the next generation
Telescope developed by ESO [1]. It will be used for testing
and validating key functionalities of the ELT, during the
periods of system verification, wavefront control commis-
sioning, through the handover to science, up to regular di-
agnostic, monitoring, or validation tasks during operations.

Figure 1: MELT optical test bench layout.

Another expected outcome of MELT would be to pro-
duce and validate requirements for the phasing and diag-
nostic station (PDS) of the ELT.

The MELT Control System (CS) Architecture follows
the principles of the ELT Control Software and its Com-
mon Development Standards. Basically, the system is di-
vided into hierarchical layers, i.e. into individual control
systems associated with Telescope subsystems, collec-
tively termed Local Control Systems, and the system that
integrates these, termed the Central Control System. There
are several products that have already been integrated
within the bench: The network infrastructure (physical and
data link layer interfaces); the messaging protocols
through Core Integration Infrastructure (CII) middleware
abstraction layer (MAL); the Instrument Control Frame-
work (IFW); and the ELT Development Environment. The
overall Software counts more than 550 files and 65K LOC,
split in different programming languages, e.g.: C++/C
(35K), Java (27K) and Python (11K).

SYSTEM DESCRIPTION

General Layout
MELT has been used as a precursor to the definition of

user requirements, functional analysis, and define the most
relevant functions. The CS block diagram (Fig. 2) describe
the components functions throughout the optical path.

• Source: Laser driven incoherent white light in the
wavelength of 500-1700nm, though a 25um multi-
mode fiber.

• M1 active segmented mirror: consisting of 61 seg-
ments, each driven by 3 piezos to control piston, tip,
and tilt with a free mechanical stroke of 15 um for
wavefront control.

• M2 hexapod: hexapod is a compact 6DOF parallel
kinematics system for the positioning and adjustment
of precision elements with a resolution of 50 nm

• M4 Deformable mirror: ALPAO 277 actuator deform-
able mirror with a clear aperture of 24.5 mm, based on
electro-magnetic actuators.

• Sensor arm: Fast tip/tilt (M5) and VIS imager, SCAO
SH WFS 256x256 pixel with 207 um lenslets, 16 x 16
subapertures on a 3.3 x 3.3 mm pupil.

• IR Path: Before entering the IR path, the beam passes
by the pupil stabilization tip/tilt mirror, with a fast full

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL006

WEMPL006
1010

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

Figure 2: MELT CS block diagram.

frame readout performed by a 240x320 pixel IR cam-
era.

• SH Phasing: Reused WFS (called SHAPS) with addi-
tional optics to adjust to the lenslet array. Additionally
an automated calibration source and filter wheel is
part of this path. Finally, a TCCD from the VLT pro-
gram, with 512 x 512 pixels The entire M1 will be
visible on the detector.

• Motors and Power control: Interface to two Beckhoff
PLC, mostly restricted to moving motors of transla-
tion stages or filter wheels.

CONTROL SYSTEM IMPLEMENTATION

Control System Goals
Apart from the validation of the control algorithms,

MELT aims to facilitate the validation of core SW products
and technologies baselined for the ELT Control System. In
order to do so, MELT will

• provide Ethernet based interfaces, between the CCS
and the subsystem control systems, in-line with ELT
(OPC/UA[2]), MUDPI, DDS[3], ZMQ[4] and protocol
buffers[5]).

• Use the ELT Software development environment,
Network infrastructure architecture and Time Refer-
ence System.

• Include Core Integration Infrastructure SW products
as they become released, i.e., Middleware abstraction
layer, Configuration, Online database, Telemetry and
Alarm system.

• Include Instrument Framework (IFW): developed by
ESO and intended as toolkit to help instrument devel-
opers to implement their control systems. It includes

a set of PLC standard libraries controlling common
devices (motors, lamps, shutters, sensors, ADCs).

• Enable closed loop and distributed control across sub-
systems (e.g. between wave front sensors and mirror
control systems).

• MELT does not include any of the aspects of the tele-
scope safety system.

Future Goals
• Integrate TREx: sub-assembly of the ELT Control

System, that manages the communication infrastruc-
ture between the control equipment and the distrib-
uted real-time computers (at instrument side)

• Integrate new CII products, e.g., Online Database,
Configuration, Alarm system and Telemetry service

Software Architecture
MELT control Software comprises multiple applications

that run the required logic to command and measure the
different devices. Due to the diverse nature of these de-
vices, a wide set of programming languages and computer
architectures are used.

The Software stack is designed so that they all use a mid-
dleware abstraction layer (MAL, part of CII) that enables
the exchange of commands/measurements via ZPB, DDS
or OPC/UA for three programming languages: Java, C++
and Python. Figure 3 shows the layered stack and main
components.

PLC controlled devices share the so called Instrument
Framework to be accessed via OPC data Access and RPC
paradigms. IFW standardize the PLC libraries used for
common devices, such as lamps, motors or timers. Addi-
tionally, it also offers a nice GUI where all devices are
shown and operated.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL006

Device Control and Integrating Diverse Systems
WEMPL006

1011

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 3: MELT control system SW stack.

Multiple Threaded Real Time Python Image
Viewer

A Real time display viewer has been developed as a Py-
thon tool to view the images provided by the three cameras
(SHAPS, Xenics IR, and Lumenera WFS). The program is
multithreaded, splitting the processing of the:

• Reception of MUDPI/RTMS packages
• Unpacking of packages and image composition
• Display of images: OpenCV[6] was used to finally

achieve a frame rate >30Fps

WFS and IR Camera Control
Three states (Idle, Configuring, Acquiring) handle the

way the camera is controlled.
• Idle: Initial state. In the entry function it initializes the

camera, and dumps its properties. Then waits until an
event is dispatched. It reacts to the events.

• Configuring: Used to set any of the available proper-
ties of the Xenics camera

• Acquiring: It acquires N images from the camera.
In order to do an end-to-end control, two modules are

required (Fig. 4).

Matlab user interface: subscribes to the images being

published through MUDPI, and waits for N images to be
received. After the N images are received, they are stored
in an array. For receiving the housekeeping and sending
commands, meltccs module is used. Meltccs: Initially
waits until it receives TM from the camera. Upon TM re-
ception commands can then be sent.

Camera LCS: Initially program creates three threads:
a. State Machine and camera control: enters into idle

state and searches for a camera attached. Once the camera
is found, its properties are dumped.

b. Command subscription: Waits until a command is re-
ceived. Acquisition command triggers the camera thermal
control (only for IR camera) during acquisition.

c. Telemetry publishing: As soon as the camera is initial-
ized, the program sends telemetry (1Hz)

Figure 4: Sequence diagram for camera control.

MELT Graphical User Interface
An engineering graphical user interface (Fig. 5) has been

developed to help the operator maintain or improve the sys-
tem. It is based on QT [7], using the tab widget, and sepa-
rates into several threads the display, the publishing of
commands and the subscription to the housekeeping meas-
urements.

Figure 5: MELT graphical user interface.

It provides the operator with mechanisms to send low
level commands, and sets of setpoints, when applicable.

Matlab User Object Oriented API
The Matlab interface permits interaction with the control

system once it is fully available. The interface provides
some functions to initialize certain subsystems. The opera-
tor GUI and user scripts are used to bring the desired sub-
systems of MELT to a state where they are available, after
which the Matlab interface is usable. Availability is on a
subsystem basis and the Matlab interface may be used in

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL006

WEMPL006
1012

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

whichever subsystem are available, while others may be
down/offline.

The basic principal is that an object may be created for
each subsystem, and the operations (sending requests or
reading measurements) are available as methods of the
command.

The basic object life cycle is:
- Initialize MATLAB session (melt_init)
- Create the object

>> m4=melt_m4;
- Connect to the subsystem

 >> m4.connect;
- Interact with the subsystem

 >> m4.status;
 >> m4.sendSetPoints(array);

- When finished, disconnect from the subsystem
 >> m4.disconnect

Melt_init is the first command to be called, and it is
called once only per Matlab session. This command sets up
the java environment, identifies the network card con-
nected to the MELT network, and sets up various commu-
nication middleware variables.

Many (ideally all) commands are interruptible if they do
not conclude in a short time. There are no long-running
commands. Commands may not return promptly when the
control system software is not running. Ctrl-C may be used
to interrupt such commands.

Network Infrastructure
MELT network infrastructure (Fig. 6) uses the architec-

ture baselined for ELT. The LAN closely follows the tele-
scope LAN design, with the Nexus switch planned for the
Service Connection Points (SCP) in the field, and con-
nected back to the computer room via single mode optical
fibre. some characteristics are:

• SCP switch: IE4010: high-performance non-blocking
switching capacity with 28 Gigabit Ethernet ports

• IGMP snooping enabled: listening to Internet Group
Management Protocol (IGMP) network traffic to con-
trol delivery of IP multicasts

Figure 6: MELT switch layout.

To avoid accidental multicast flooding on the ESO net-
work a Linux gateway is configured such that all outbound
multicast can be blocked. The gateway Linux instance will
be run as a VM one ESX server.

Infrastructure and Deployment
MELT Control System is deployed in a distributed envi-

ronment comprised of different servers and machines (Fig.
7): 3x Dell PowerEdge r330 16RAM, XEON® CPU E3-
1270 3.8Ghz: 1xCentOS 7.4, 1xCentOs7.4 with RT patch,
1xWindows, VME crater for the M1 LCU, 2x Beckhoff
CX2030 PLC, 4xVLT like LCUs.

The two Linux hosts run the ELT Linux development
Environment [8], comprised of:

- Support for C/C++, Java, Python programming lan-
guages and QT5.

- Build system: WAF
- Unit tests: googe tests, nosetests, testing
- Integration tests: Robot Framework
- Continuous integration: Jenkins
- OS: Linux CentOS7.4

Each PLC run TwinCAT3, which is a realtime kernel and

development environment from Beckhoff automation, and
implements I/O communication through EtherCAT, and
has a motion module taking care of the calculations for the
different axis doing motor control.

Figure 7: CS Infrastructure and deployment view.

Communication Patterns
As in ELT Control System, two communication patterns

are used: publish/subscribe and request/reply, then they are
mapped to the underlaying communication middleware
software stack, all abstracted within the Core Integration
Infrastructure Middleware abstraction layer (Fig. 8).

Figure 8: MELT communication stack

Specifics of the MELT’s usage of MAL:

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL006

Device Control and Integrating Diverse Systems
WEMPL006

1013

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

• publish/subscribe via DDSMAL: Specific QoS librar-
ies and profiles created for setting reliable_reliabil-
ity_qos (DDS will attempt to deliver all samples in its
history. Missed samples may be retried) and transi-
ent_local_durability_qos (can be delivered to any po-
tential late-joining) properties.

•
• Request/Reply via OPCMAL [2]: Usage of Remote

Procedure Calls (RPCs) allow MELT CS to control
e.g. the PLC controlled motors or Flipper stage tip tilt.

• Publish/subscribe via MUDPI MAL: Multicast UDP
Interface (MUDPI) contains no transaction or session
requirements, it is little more than a standardized
wrapper for UDP payloads with some additional con-
straints. This very simplicity, however, is one of its
key requirements, making it suitable for use in Ether-
net-based distributed control loops and high perfor-
mance interfaces of the ELT Control System across
languages and architectures

Additionally, Real-Time MUDPI Stream (RTMS) proto-
col is used for the exchange of images between the cameras
and the MELT abstraction layer. RTMS is a low-latency,
deterministic communication meant for the Adaptive Op-
tics (AO) Real-Time Computer (RTC) Hard Real-Time
Core (HRTC) of the ELT.

SYSTEM PERFORMANCE
Several equipment running at different rates are inte-

grated in the bench. The control loop runs subsystems at
different rates, collecting observable data at frequencies up
to 1KHz. The most demanding devices, in terms of perfor-
mance required, are the ASM and M4DM. ASM perfor-
mance test measurements show that the difference between
the expected send time and the actual one is 0.1uSec.

Regarding the deformable mirror, it is shown in Fig. 9,
the latency of 130 us from first byte reception to the appli-
cation of setpoints, with the system running at 1KHz. Im-
age is obtained with an oscilloscope.

Figure 9: M4 setpoint application performance.

CONCLUSION
We have presented the Control system and detailed Soft-

ware design, used for the MELT project within the EL pro-
gram. Similarities (technology wise) to the ELT control ap-
proach has been shown and discussed. MELT is now ready
to be used to develop the design strategy for the PDS and
will in the future help to derive its technical specifications.

With its capability to adapt to other wavefront control
strategies, MELT enables us to find the best starting strat-
egy, when this task is to be used at the ELT. In addition, the
central control system of the ELT can already now interface
with real hardware and validate software work on the
bench that is outsourced. Over the following years, the pre-
sented design will most certainly not stay static, but exhib-
its changes to the needs that result from the usage of MELT.
We hope that this learning experience will help us prepare
for the ELT commissioning, as discussed at the beginning.

ACKNOWLEDGEMENTS
The authors would like to thank the entire APE team for

their work, which provides the grounds used to extend on
with the present project. Additionally, the support received
from the CII and IFW Software development teams has
been of great help, and has allowed a successful procure-
ment of the MELT Control System.

REFERENCES
[1] T. Pfrommer et al., "MELT: an optomechanical emulation

testbench for ELT wavefront control and phasing strategy",
in Proc. SPIE 10700, Ground-based and Airborne Telescopes
VII, no. 107003F, Jul. 2018.

[2] OPC Unified Architecture,
https://opcfoundattion.org/about/opc-technol-
ogies/opc-ua/

[3] Rti DDS,
https://community.rti.com/rti-
doc/500/ndds.5.0.0/doc/html/api_java/in-
dex.html

[4] ZeroMQ, https://zeromq.org

[5] Protocol buffer,
 https://developers.google.com/protocol-buf

[6] OpenCV,
 https://pypi.org/project/opencv-python/

[7] QT framework, https://www.qt.io/

[8] F. Pellegrin, and C. Rosenquist, “The ELT Linux Develop-
ment Environment”, in Proc. 16th Int. Conf. on Accelerator
and Large Experimental Control Systems (ICALEPCS’17),
Barcelona, Spain, Oct..2017,

 doi:10.18429/JACoW-ICALEPCS2017-THBPL05

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL006

WEMPL006
1014

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

