
CUMBIA: GRAPHICAL LIBRARIES AND FORMULA PLUGIN TO
COMBINE AND DISPLAY DATA FROM TANGO, EPICS AND MORE

G. Strangolino, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy

Abstract
Cumbia libraries offer the next generation core (C++)

and graphical (Qt) software to write complete and
lightweight applications that provide a unified user
interface, regardless of the underlying engine (Tango,
EPICS, WebSocket, ...) With the new formula plugin,
results can be manipulated and combined by JavaScript
functions and displayed in the appropriate widget. Qt has a
deep JavaScript integration that allows efficient
introduction of program logic into the application. Using
the Qt + QML technologies, apps can be designed for the
desktop and mobile devices. Switching between the two
targets is an immediate operation. A WebSocket based
service has been used to test Qt + QML mobile applications
on portable devices. It makes it possible to connect to
Tango and EPICS without their installation. A new tool
called la-cumparsita lets non-programmers use the Qt
designer to realize complete applications ready to
communicate with the control system in use: Tango, EPICS
or any other abstraction framework (e.g. WebSocket).
These apps seamlessly integrate with the desktop. Most
demanding users can integrate JavaScript functions and use
them as data sources for the GUI elements.

STRUCTURE OF THE FRAMEWORK
The cumbia library is made up of several modules. The

core and the engine specific ones are written in pure C++,
while those providing graphical elements employ the Qt
framework [1]. Figure 1 outlines the relationship between
the main modules that compose the software.

Figure 1: Relationship between cumbia main modules.

The next paragraphs describe each component in more
detail.

MODULES

Cumbia Base Module
Cumbia is a component that offers a carefree approach

to multi thread application design and implementation. The
user writes activities and decides when their instances are
started and to which thread they belong. A token is used to

register an activity and those with identical tokens are run
in the same thread. Work is done inside the init, execute
and exit methods. The library guarantees that they are
always called in the activity thread. From within init,
execute and exit, computed results can be forwarded to the
main execution thread, where they can be used to update a
graphical interface. Data is exchanged by means of a
dedicated key/value bundle, named CuData.

Cumbia-tango
Cumbia-tango integrates cumbia with the Tango [2] con-

trol system framework, providing specialised activities to
read, write attributes and impart commands. Readings are
accomplished through either a poller or the Tango event
system, for those attributes suitably configured. Write op-
erations are always executed in an asynchronous thread and
the result is delivered later in the main thread. Cumbia ac-
tivities are employed by the module to setup the connec-
tion, access the database, subscribe to events or carry out
periodic readings. Progress and result events are delivered
to the main thread from the background activity. As stated
in the previous section, activities identified by the same to-
ken belong to the same thread. Here, the token is the Tango
device name. Applications that connect to the Tango con-
trol system will typically instantiate a CumbiaTango object
that defines which kind of threads will be used (e.g. Qt’s
for graphical interfaces) and thereafter parametrizes each
reader or writer. Several modern design patterns have been
exploited to provide a flexible and scalable architecture.
Singletons have been completely replaced by service pro-
viders in order to offer services For graphical applications.
The component provides helpful classes that can be used
from outside an activity to access devices, fetch database
properties or interpret exceptions raised from within the en-
gine. Aside from these utilities, one would not normally
employ this module directly. Cumbia-qtcontrols and qum-
bia-tango-controls is where to look for when the integra-
tion between the control system and the user interface is
the objective.

Cumbia-epics
Cumbia-epics integrates the Experimental Physics and In-
dustrial Control System (EPICS) [3] control system with
cumbia. The interaction with the lower level cumbia base
component and the interface offered to clients is equivalent
to the cumbia-tango’s. Configuration, monitor and put op-
erations are currently implemented. Data is exchanged
through the same aforementioned key/value structure
(CuData). Differences between the EPICS and Tango en-
gines are concealed and utmost effort has been taken to
unify the representation of the results. For example, Tango
Max value database attribute property and EPICS up-
per_disp_limit from dbr_ctrl data are both stored into the

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR01

User Interfaces, User Perspective, and User Experience(UX)
WEDPR01

971

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

CuData value associated to the max key. Cumbia-tango
and cumbia-epics clients are thus enabled to represent data
in a way that is independent of the source. Further exten-
sions to the cumbia framework operating on additional en-
gines should commit to this sort of contract pledging ho-
mogeneous data representation across diverse control sys-
tems or software architectures (cumbia-websocket is an-
other example). Table 1 describes some relevant keys with
their data type stored by a typical CuData carrying a result.

Table 1: Example of CuData Contents

KEY TYPE VALUE DESCRIPTION

type string “property” Identifies a configuration content

src string - The source name as configured
with setSource

value CuVariant - The value read by the engine

display_unit String - The unit for displayed data

min String - Minimum value (convert with
toDouble)

max String - Maximum value (convert with
toDouble)

err Bool true|false True if an error occurs

Msg String - Operation/error message

timestamp_ms time_t +
suseconds_t

- Timestamp from struct_timeval:
tiv.tv_sec * 1000 + tiv.tv_usec /

1000; Convert with toLongInt()

Cumbia-qtcontrols Module
This module combines cumbia with the Qt cross plat-

form software framework, offering graphical control sys-
tem components. Labels, gauges, thermometers and ad-
vanced graphs are supplied, as well as buttons, spinners
combo and text boxes to set values. Components are una-
ware of the engine to which they are connected. In order to
display real data on the controls, different building blocks
must be combined when they are set up. When data is avail-
able from the background (i.e. from the control system), it
is delivered to the component in the main application
thread. Control elements need to implement the CuDataL-
istener interface. Figure 2 represents some of the aspects
hitherto described. Readers and writers must adhere to in-
terfaces that declare how to set and remove sources and tar-
gets of execution, as well as how to send and receive mes-
sages to and from the background activities. A report on the
health of the link between the object and the control system
is available through the context menu. A dialog shows in-
formation concerning the application and author, errors and
connection statistics. It is possible to start a fresh live
reader, inspect received data structures (CuData) and see a
graph of the value over time for scalar data types. In case
of malfunction, error messages are reported as well.

Qumbia-tango-controls

Qumbia-tango-controls is written in Qt so as to blend the
cumbia-qtcontrols and the cumbia-tango modules together.
It provides a higher level interface to use graphical ele-
ments and QObjects from the Qt library and link them to

the tango control system. Factories instantiate Tango read-
ers and writers. They represent the second building block
used to instantiate engine-independent objects. The first is
CumbiaTango, mentioned in the namesake section.

Figure 2: Building blocks allow component decoupling.

Qumbia-epics-controls
Qumbia-epics-controls is the equivalent of the Tango

counterpart described in the previous section. Cumbia-
qtcontrols items represent data uniformly no matter what
control system they are linked to. Figure 3 shows an
application with mixed sources from Tango and EPICS. At
the bottom of Figure 2 one can see how a cumbia object is
generally instantiated: either by means of an engine
specific Cumbia object and reader (writer) factory or
through Cumbia and factory pools. Available control
systems register to the pools and the pools at runtime guess
which one each source belongs to, according to
characteristic name patterns.

Figure 3: Tango and EPICS sources displayed by a cumbia
application.

The Cumbia-qtcontrols-qml Module
The QML module employs the modern QtQuick/QML

technology as an alternative to the classic Qt widgets.
Amongst the advantages, we mention faster development
thanks to the declarative language and the integration with

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR01

WEDPR01
972

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

the Qt creator and smooth realization of mobile
applications. Qt for Android enables one to run Qt 5
applications on such platform and supports native Android
style with Qt Quick Controls. Cumbia-qtcontrols-qml
integrates with cumbia (Tango, EPICS, Websocket) and
offers a set of elements already included in the Qt creator
library: labels, circular gauges, trend and spectrum charts
(the latter based on QtCharts QML). Since Tango and
EPICS do not build natively on Android, the test
applications connect to the control system through cumbia-
websocket. The last mentioned component gives access to
the control system through the websocket technology in
combination with the canoned server developed within the
PWMA project [4]. In Fig. 4 one can see a Qt QML
application running on an Android device.

Figure 4. Three Tango attributes are read through the
websocket interface provided by the canoned server
(PWMA project).

PLUGINS
Cumbia library has been designed to be modular, fast and

reliable. This objective is achieved more effectively if it is
kept as small and basic as possible. Nonetheless, it can be
expanded through plugins. New releases of the library will
seldom introduce new features. Rather, they may introduce
interfaces and loaders for additional plugins. A set of
fundamental ones is included in the default cumbia-libs
distribution available from github.com. They provide
extensions to fetch properties from the Tango database,
start helper applications, communicate through the DBus
message bus, serialize reading of multiple sources, Qt
designer integration, a set of context menu actions on the
cumbia-qtcontrols widgets and support for formulas and
JavaScript functions. More plugins can be downloaded
from the ELETTRA github page [5]. The most relevant
ones are discussed in the ensuing sections.

Formula Plugin
The formula plugin extends the base functionalities

combining readings into formulas and functions. Sources
of data can be written in the form of JavaScript functions
rather then as simple variable names. Editing can be done
from the Qt designer and the resulting application will
understand formulas as soon as the plugin is loaded. Figure
5 shows the designer Edit source form and Figure 6 a
spectrum plot representing two waveforms, their sum and
difference.

Figure 5. Qt designer Edit Source form with a JavaScript
function.

In the example above, the readings from the two sources in
the brackets will replace the a,b input parameters to the
JavaScript function. A third vector, named c in the
function, is returned and used to provide data for the Source
4, that has been given the diff alias

Figure 6. Two Tango waveforms, their sum and their
difference.

Qt Designer Plugin
A Qt designer plugin lets the developer draw the graphical
user interface and configure the sources and targets very
quickly. The generated form can be either enriched by
additional logic into the C++ code or directly interpreted
by the la-cumparsita application. The QML module
integrates a library of elements directly into the Qt
creator’s designer.

Extra Widgets Plugin
Custom widgets can be added to the basic set offered by

the cumbia controls. One interface is defined for the plugin
and one for the widgets. The latter is not a requisite because
the Qt property system can be used to access methods and
attributes (for example source and target). The real time
plot is a graph that extends the base cumbia spectrum plot

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR01

User Interfaces, User Perspective, and User Experience(UX)
WEDPR01

973

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

and adheres to a pattern that is common at ELETTRA:
Tango devices expose commands with two input
arguments that return arrays of data. This specific graph
offers configuration options for such class of commands.

Extra widget plugins’ name must match a given pattern,
so that they can be easily identified and loaded. Each one
offers a catalog of the components that are instantiated by
one of the several flavours of the create method (both
engine specific reader and writer allocation or pool factory
approaches are available). When an application needs an
object, it tries to find the supplier by class name through
the extra widget plugin loader. On success, usage and
access to properties are immediate.

APPLICATIONS
A set of utilities is included in the cumbia library

distribution. They help the programmer develop new
applications and migrate from QTango [6] projects.
Additionally, they supply a generic client and a tool that
allows setting up a control panel without using knowledge
of coding.

Developing C++ Cumbia Applications
New software can be written in C++ with the same

approach taken with QTango. A tool named cumbia new
project can be used to create a skeleton project, that can be
edited with Qt creator and Qt designer. The latter hosts a
collection of base cumbia widgets that can connect to the
available engines on the fly. To build the project, an
instrument called cumbia ui make needs to be executed.
When the Qt build system generates the C++ code from
the ui file created with the designer, default widget
constructors are invoked. Since cumbia objects need to be
parametrized at creation time, the cumbia ui make
recognises and expands the constructors of the classes of
the library as well as the custom ones that may have been
added to the project. After a successful expansion, the
workspace can be built. The command cumbia new control
assists the programmer write a specialised reader or writer
either for a specific project or as a supplementary
component (e.g. part of the catalog of an extra widget
plugin). Those familiar with QTango will immediately
recognise that the two programming methodologies are
much the same. For instance, the naming conventions for
the sources and targets are identical.

Developing Codeless Cumbia Applications
La-cumparsita is a ui file interpreter. This means that

simple GUIs can be composed with the Qt designer and
then executed with the same look and feel and level of
integration as any other cumbia Qt application. La-
cumparsita supports the formula plugin, so that JavaScript
functions can be mixed into elementary readers and
writers. Figure 6 is actually a screenshot taken from la-
cumparsita app.

Generic Client
The cumbia client command followed by a list of sources

is a versatile tool to quickly connect, display and change

field quantities. It works with most data types and
constitutes an example of the seamless integration of
distinct engines into one single application. Provide a
mixed list of sources from distinct control systems (for
instance Tango and EPICS) to experience this feature.

A Bot for the Telegram Messaging Application
As described in [4], Telegram is a cloud-based mobile

and desktop messaging app focused on security and speed.
It is available for Android, iPhone/iPad, Windows, macOS,
Linux and as a web application. The bot is a server
application that connects the control systems supported by
cumbia to Telegram. One can read and monitor values, as
well as receive alerts when something special happens.
Simple source names or their combination into formulas
can be sent to the bot. It replies and notifies results. It is
simple, fast and intuitive. Refer to [7] for detailed
information.

INSTALLATION AND UPDATES
The installation is automated by a shell script that guides

throughout the whole process. After downloading the
library from github[8], one must check the configuration in
scripts/config.sh (to set the destination prefix and optional
minor details) and finally execute ./scripts/cubuild.sh
tango epics install to build and copy the files into the
system. Later on, the updates can be automatically
accomplished with the cumbia upgrade command. It will
prompt to choose the desired version, download it, rebuild
and set it up automatically. Plugins may need to be
manually rebuilt after a major version change. The
documentation lists the prerequisites and dependencies and
explains how to install every cumbia module by hand.

DOCUMENTATION
Special care has been taken in writing the

documentation[9]. It is hosted by github.io and maintained
in a dedicated branch, named cumbia-libs-gh-pages.
Alongside class documentation, frequently asked questions
and tutorial sections with code examples are available.

CONCLUSIONS
The cumbia libraries have been introduced into the

ELETTRA control room workstations since last major
Linux distribution upgrade. They stand side by side with
QTango and the migration is going to be gradual. Early
comparison tests between the core of the two frameworks
show a very good performance of the new one. Figure 7
shows a graph of the CPU usage of two equivalent console
applications performing readings of the same Tango
attributes and commands.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR01

WEDPR01
974

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

Figure 7. CPU usage over time of two equal command line
applications, one relying on cumbia (red curve), the other
on QTango (blue).

The design of the cumbia libraries focuses on lightness
and simplicity, to promote extension and composition of its
base elements to create more complex objects. Another
central point is expanding the collection of items and
functionalities through plugins. The design strategies will
additionally ensure long life and flexible adaptation to
increased demands in development and performance of
control system applications. La-cumparsita is a tool that
enables to realise graphical user interfaces without writing
any code. Notwithstanding, JavaScript functions or the
simple combination of results into formulas can broaden its
field of application.

REFERENCES
[1] Qt cross platform software development for embedded &

desktop, https://www.qt.io/

[2] Tango, http://www.tango-controls.org

[3] Experimental Physics and Industrial Control System,
https://epics.anl.gov/

[4] L. Zambon, A. I. Bogani, S. Cleva, E. Coghetto, F. Lauro, and
M. De Bernardi, “Web and multi-platform mobile app at
ELETTRA”, in Proc. ICALEPCS’17, Barcelona, Spain,
October 2017, paper TUSH103.

[5] https://github.com/
ELETTRA-SincrotroneTrieste/

[6] G. Strangolino, F. Asnicar, V. Forchì, and C. Scafuri,
“QTango: a library for easy Tango based GUIs development”,
in Proc. ICALEPCS’09, Kobe, Japan, Oct. 2009, paper THP096.
https://github.com/ELETTRA-SincrotroneTrieste/qtango

[7] G. Strangolino, “Cumbia-Telegram-Bot: Use Cumbia and
Telegram to Read Monitor and Receive Alerts from the
Control Systems”, in Proc. ICALEPCS’19, New York, U.S.A,
Oct. 2019, this conference,
https://github.com/ELETTRA-
SincrotroneTrieste/cumbia-telegram

[8] https://github.com/ELETTRA-
SincrotroneTrieste/cumbia-libs

[9] https://elettra-
sincrotronetrieste.github.io/cumbia-libs/

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR01

User Interfaces, User Perspective, and User Experience(UX)
WEDPR01

975

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

