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Abstract

The ALICE Experiment at CERN LHC (Large Hadron

Collider) is undertaking during Long Shutdown 2 in 2019-

2020 a major upgrade, which includes a new computing

system called O2 (Online-Oline). To ensure the eicient

operation of the upgraded experiment along with its newly

designed computing system, a reliable, high performance

and automated experiment control system is being developed

with the goal of managing all O2 synchronous processing

software, and of handling the data taking activity by interact-

ing with the detectors, the trigger system and the LHC. The

ALICE Experiment Control System (AliECS) is a distributed

system based on state of the art cluster management and mi-

croservices which have recently emerged in the distributed

computing ecosystem. Such technologies will allow the AL-

ICE Collaboration to beneĄt from a vibrant and innovating

open source community. This communication illustrates the

AliECS architecture. It provides an in-depth overview of the

systemŠs components, features and design elements, as well

as its performance. It also reports on the experience with

AliECS as part of ALICE Run 3 detector commissioning

setups.

INTRODUCTION

The O2 Computing System

The ALICE experiment [1] is undergoing a major up-

grade [2] which is being deployed during LHCŠs Long Shut-

down 2 (2019-2020) in preparation for LHC Run 3. The new

and upgraded detectors result in a signiĄcantly increased

data rate, and in order for the data processing to keep up,

a new computing system called O2 [3] is being designed,

developed and deployed.

In its production stage, the O2 computing system will

consist of 100,000s of processes, deployed over roughly

1000 heterogeneous nodes, fulĄlling roles including data

readout, processing, storage and auxiliary services. The

system will read out 27 Tb/s of raw data and record 800

Gb/s of reconstructed data.

The data driven components of the O2 computing system

will run on two main typologies of computing nodes: FLPs

(First Level Processors) and EPNs (Event Processing Nodes).

Each FLP is Ątted with CRU (Common Readout Unit) [4] or

C-RORC (Common Readout Receiver Card) [5] hardware,

depending on the detector. These PCI-Express cards are

capable of two way communication with detector front end

electronics.
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The O2 computing system will be capable of two kinds

of data-driven workĆows: synchronous operation, intended

to be synchronous with detector readout, and asynchronous

operation, which will take place at any time regardless of

detector or beam conditions. Most nodes are expected to

run dozens of processes of diferent kinds, including long

running services, WLCG-like (Worldwide LHC Computing

Grid) environments for asynchronous processing, and data-

driven process workĆows. Synchronous workĆows operate

on data coming from detector data links, thus they must run

in the O2 facility at LHC Point 2. Asynchronous workĆows

do not have this constraint, they can therefore run at any time

on WLCG nodes, or on O2 facility resources when they are

not needed for synchronous operation.

The O2/FLP Computing Cluster

O2 is being developed as a complete solution for the data

processing needs of the ALICE experiment during Run 3,

but the O2 compute system is split up in two separate com-

puting clusters due to signiĄcant diferences in requirements

between FLPs and EPNs. This division yields the O2/FLP

computing cluster and the O2/EPN computing cluster, both

deployed at LHC Point 2.

The fundamental diference between these two main kinds

of nodes stems from the fact that FLPs have direct Ąber links

to detector front end electronics, making them permanently

bound to a speciĄc detector or detector component. Dif-

ferent FLPs may also have a variable number of CRU or

C-RORC cards, and diferent system speciĄcations. FLPs

are not interchangeable, thus the O2/FLP cluster is inevitably

a heterogeneous environment. On the other hand, EPNs do

not have direct links to detector front end electronics, and

they are largely interchangeable, with the purpose of hosting

scalable processing workĆows which can be replicated on as

many EPNs as needed, depending on the required workload.

Figure 1: O2/FLP and O2/EPN cluster control with respect

to the ALICE Run Control Centre.

Each of the two computing clusters has its own specialized

control system. Ultimately, the O2 system as a whole will be

controlled via a single user interface, an ECS (Experiment

Control System) solution in the ALICE Run Control Centre

(see Fig. 1).

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPL02

WEDPL02
956

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Upgrades



Target Operational Improvements in an Experi-

ment Control System for ALICE Run 3

The goals and requirements of the ALICE experiment

control system (AliECS) are derived from experience in

running the previous computing system (LHC Run 1 and

2) [6], and are motivated by a desire for greater reliability,

performance, maintainability, and operational Ćexibility.

Target operational improvements include

1. no workĆow redeployment when including or excluding

a detector from data taking,

2. recovery from process and server crashes,

3. process reconĄguration without mandatory restart,

4. and EPN scaling during data taking (e.g. as luminosity

decreases towards the end of a LHC Ąll).

The O2 project includes a redesign of user interfaces, in

favor of next-generation web-based GUIs with SSO (single

sign-on) and a revamped design. AliECS comes with a num-

ber of command line and graphical user interfaces, including

shifter oriented GUIs which supersede those of the previous

generation ECS.

Finally, the O2 project is an opportunity to take advan-

tage of modern developments in computing, thus AliECS is

built with the best practices of a microservices distributed

application paradigm, and harnessing the features of modern

cluster resource management systems.

REQUIREMENTS OF AN ECS SOLUTION

FOR ALICE RUN 3

AliECS is a new control system, currently under devel-

opment with the goal of managing the O2 facility, and of

handling the various phases of the data taking activity by

interfacing with the detectors, the trigger system and the

LHC. AliECS includes common large high-energy physics

experiment control functionalities, such as conĄguration and

control of data taking runs, plus Ąne-grained control of the

O2/FLP cluster.

The primary duty of a control mechanism for the ALICE

O2 system is to launch, conĄgure and control a set of data-

driven workĆows inside a computer cluster. On top of this

cluster control role, AliECS is in charge of

1. managing the lifetime of thousands of processes in the

O2/FLP cluster (while delegating control of O2/EPN

processes to a specialized control mechanism for the

O2/EPN cluster),

2. minimizing the waste of beam time by reusing pro-

cesses and avoiding time-consuming process restart

operations,

3. and interfacing with the LHC, the trigger system, the

DCS (Detector Control System) [7] and other systems

through common APIs.

Synchronous and Asynchronous Workflows

From a cluster control point of view, the primary task of

AliECS is to handle the details of synchronous workĆows,

as this kind of workĆow is time-critical and directly afected

by experiment operations. Asynchronous workĆows will

be executed in Grid-like environments, both on the WLCG

and inside the O2 facility when resources are available, on

a best-efort basis. At times when the O2/EPN facility has

free resources (i.e., compute resources not used for syn-

chronous operation), the O2/EPN control mechanism will

have the responsibility of setting up asynchronous process-

ing environments for tasks like asynchronous reconstruction,

analysis, and simulation. AliECS will be able to reclaim re-

sources assigned to asynchronous operation if synchronous

processing workĆows require them by requesting from the

O2/EPN to ensure immediate availability of these resources

for synchronous operation.

AliECS DESIGN OVERVIEW

Due to the tight coupling required between high-level

experiment control and O2/FLP cluster control, AliECS in-

tegrates both control levels (experiment control and O2/FLP

cluster control) into a single system. Thus, AliECS provides

in-depth control of every data-driven process running in the

O2/FLP cluster. It is foreseen for the AliECS core to further

interface with the O2/EPN control mechanism, but only for

coarse-grained, high-level control of the O2/EPN cluster.

AliECS is a distributed system in charge of the O2 facility

(directly or indirectly), with full knowledge and control over

the resources of the O2/FLP cluster. It implements a reliable

and distributed state machine mechanism to represent the

aggregated state of the constituent O2 processes of a data-

driven workĆow. Furthermore, it allows reconĄguration and

reuse of running O2 processes as often as possible to avoid

process restarts, and it allows simultaneous operation of mul-

tiple workĆows, with easy reallocation of resources among

workĆows. Finally, it reacts promptly to inputs, handling

events from the user, the LHC, the trigger system, the DCS,

and the cluster itself with a high degree of autonomy.

The O2 project has chosen FairMQ [8] as the common

message passing and data transport framework for its data-

driven processes. It has been developed in the context of

FairRoot [9, 10], a simulation, reconstruction and analysis

framework for particle physics experiments. FairMQ pro-

vides the basic building blocks to implement complex data

processing workĆows, including a message queue, a conĄg-

uration mechanism, a state machine, and a plugin system.

Resource Management in the O2/FLP Facility

We implement AliECS as a distributed application, using

Apache Mesos [11, 12] as toolkit. This custom solution

integrates a task scheduler component, a purpose-built dis-

tributed state machine system, a multi-source stateful process

conĄguration mechanism, and a control plugin and library

compatible with any data-driven O2 process.

An Overview of Apache Mesos Apache Mesos is a

cluster resource management system. It greatly streamlines

distributed application development by providing a uniĄed

distributed execution environment. Mesos facilitates the
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management of O2/FLP components, resources and tasks

inside the O2/FLP facility, efectively enabling the developer

to program against the datacenter (i.e., the O2/FLP facility

at LHC Point 2) as if it was a single pool of resources.

Apache Mesos comes with two main components: mas-

ters and agents. In a Mesos-enabled cluster there is a Mesos

agent running on every node: its purpose is to collect infor-

mation on the resources available on that node, and to handle

task deployment. A Mesos-enabled cluster must also have at

least one Mesos master. In this context, a Mesos-aware dis-

tributed application is called a framework. When developing

a framework, the developer must build a scheduler process

(which subscribes to the Mesos master), as well as one or

more executors. The Mesos master acts as an authoritative

source of knowledge on cluster resources, and periodically

sends resource ofers to the schedulers of the frameworks

running on the cluster, which can then use these resources

to run tasks.

In order to run a task, a Mesos agent runs the selected

executor component of the framework that accepted the re-

sources provided by this agent, and the executor can then

run a process or perform any other operation as required by

the scheduler.

The Role of Apache Mesos in the O2/FLP Facility

Apache Mesos has become a household name in the industry,

and it has been used in deployments of 10,000s of nodes. It

is an open source project, hosted by the Apache Software

Foundation. Commercial support is available.

For AliECS, beneĄts of using Mesos include

1. the knowledge of what runs where,

2. resource management, which facilitates various deploy-

ment steps including port assignment, node selection,

conĄguration, and others,

3. transport facilities for O2-speciĄc control messages,

4. task status tracking (e.g. an event is raised if a task dies

unexpectedly),

5. and advanced features such as node attributes, resource

overprovisioning, checkpointing, and others.

The drawback of having Apache Mesos as an additional

component in the stack is compensated by its beneĄts. We

also argue that implementing a computing system at the scale

of O2 with modern techniques would in any case involve a

resource management system component or mechanism.

It is important to note that Apache Mesos is not a control

system. The requirements, and thus the design of AliECS

include much beyond Mesos.

AliECS Components

AliECS, our proposed solution for the problem of O2/FLP

synchronous control and ECS is under development. The cur-

rent implementation of AliECS can be found on GitHub [13],

and it consists of

1. the AliECS core (which includes the Apache Mesos-

facing scheduler component),

2. the AliECS executor,

AliECS GUI
AliECS CLI

gRPC
AliECS
core

schedulerׁ׀

AliECS
executor

AliECS
executor

an˃
O² process

FairMQ-based 
O² process

OCC plugin

Mesos

gRPC

LHC
detectors

trigger

OCC librar˃

Scheduler API

Executor API

Mesos master

Mesos agent Mesos agent
Executor API

gRPC

configuration

gRPC
DIM  DIP

O²/EPN
cluster control

Figure 2: The AliECS architecture. All control communica-

tions between core and executor instances are piggybacked

on Mesos messages. RPC-pattern interaction between the

user interfaces and the AliECS core, and between the ex-

ecutor and the controlled O2 process is implemented with

gRPC. The OCC plugin hides the complexities of handling

gRPC connections and driving the state machine.

3. the O2 control and conĄguration plugin for FairMQ

devices (OCC plugin),

4. the O2 control and conĄguration library (OCC library),

5. the AliECS control and conĄguration command line

utility (coconut),

6. the AliECS process execution and control utility for

OCC library based O2 processes (peanut),

7. and the web-based AliECS GUI.

The AliECS core accepts requests from the AliECS GUI

or from coconut. These requests are then processed, and

they result in Mesos API calls, handlers for Mesos API

events, or O2-speciĄc control messages (using Mesos API

calls and handlers for transport).

Furthermore, AliECS interfaces via a conĄguration wrap-

per library with Consul [14], a key-value store which acts

as the systemŠs conĄguration repository. The design also

includes interfacing with information sources from the LHC,

the trigger system, and the DCS.

Most components of AliECS are written in Go [15], a stat-

ically typed general purpose programming language in the

tradition of C, which is particularly suitable for distributed

system development because of its advanced synchroniza-

tion and threading facilities. The OCC plugin is developed

in C++17, and works with any FairMQ-based process. A

non-plugin library equivalent of the latter is also provided,

for O2 processes which do not support the FairMQ plugin

system.

Inter-process Communication in AliECS

The common idiom of inter-process communication in

AliECS is gRPC [16], an open source, cross-language RPC

(remote procedure call) system backed by Google. It is
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widely used in the microservices community. gRPC comes

with a code generator which produces client and server stub

code based on a common descriptor Ąle. Once the developer

describes the client-server interface in this Ąle, the generator

can output stubs for C++, Go or any other supported lan-

guage, enabling seamless interaction between processes in a

heterogeneous cross-language distributed system. Depend-

ing on the language, for the developer this gRPC-mediated

remote interaction mimics local function calls.

In AliECS, gRPC is used for communication between the

core and the user interface (both coconut and the web-based

GUI), and for communication between the executor and the

OCC plugin or library (see Fig. 2). gRPC interfaces are also

under development for interaction with other systems such

as the trigger system and the DCS.

Alternatives to gRPC were considered, such as a REST

API. This approach would have required more efort on the

client side, and it would have been less comfortable to use,

especially for two way interaction between the executor and

the OCC component. A framework such as Swagger [17]

could mitigate some of these drawbacks. Several competitors

to gRPC in the RPC space were also considered, including

CapŠn Proto [18], MessagePack-RPC [19], JSON-RPC [20]

and the net/rpc [21] package from the Go standard library,

but most of them fell short on some key criteria, such as per-

formance, developer support, suitability for cross-language

communication, and ease of use.

AliECS Concepts

The basic unit of scheduling in AliECS is a task. A task

generally corresponds to a process, speciĄcally a process

that can receive and respond to OCC-compatible control

messages. All AliECS workĆows are collections of tasks,

which together form a coherent data processing chain.

Tasks are the leaves in a tree of roles. A role is a runtime

subdivision of the complete system, it represents a kind of

operation along with its resources. Each task implements

one or more roles. Roles allow binding tasks or groups of

tasks to speciĄc host attributes, detectors and conĄguration

values. Each role represents either a single task, or a group

of child roles. If tasks are leaves, roles are all the other nodes

in the control tree of an environment.

In comparison with the ECS partitions used in Run 2, we

aim to provide novel, more Ćexible, and more easily deploy-

able abstractions. In memory, a tree of O2 roles, along with

their tasks and their conĄguration is a workflow. A workĆow

aggregates the collective state of its constituent O2 roles. A

running workĆow, along with associated detectors and other

hardware and software resources required for experiment

operation constitutes an environment.

The Environment State Machine Every environment

has a distributed state machine, which drives the state of its

tasks (see Fig. 3). In memory, each role as a node in the

control tree also has a state, which aggregates the states of

its child roles (or of its single child task). Thus, the state

Figure 3: The state machine of an AliECS environment.

The same state machine is implemented by each task. For

FairMQ-based tasks the OCC plugin acts as a translation

layer between the AliECS task state machine and the under-

lying FairMQ state machine.

machines of each individual process are directed by the top-

level state machine of the environment.

When an environment is in state "RUNNING", it imple-

ments an activity, such as a data taking run. Every run (or

activity) has a unique run number, thus an environment can

acquire multiple run numbers in its lifetime, for multiple

runs, one at a time, with each run number only being valid

during the RUNNING state, between a "START_ACTIVITY"

transition and the subsequent "STOP_ACTIVITY" transition.

The environment state machine is the entry point for all

process control operations. Some examples of control re-

quests at this level include creating a new environment by

loading a workĆow template from a conĄguration reposi-

tory (which also instantiates the new environmentŠs state

machine), requesting a state transition for an environment,

or destroying an environment.

Configuration Management

AliECS is both a producer and consumer of conĄguration

data in the O2/FLP cluster. There are 3 kinds of conĄguration

information that AliECS deals with:

1. the AliECS core conĄguration,

2. the AliECS workĆow conĄguration,

3. and the O2 tasks conĄguration.

Core Configuration The AliECS core conĄguration is

a Ćat list of read-only values which the AliECS core acquires

on startup. This kind of conĄguration can be populated from

a Ąle, from command line parameters, and from environment

variables (whatever the person who deploys the software

prefers, and these conĄguration sources can be combined).

Typical values that come from this conĄguration mechanism

are the control port to use for incoming AliECS GUI or

coconut connections, the URI of the Mesos master API,

and path of the AliECS executor on controlled nodes. Once

set, this kind of conĄguration data cannot change throughout

the lifetime of the AliECS core process.

Workflow Configuration The AliECS workĆow con-

Ąguration is acquired by way of a conĄguration manager
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subsystem which uses Git repositories as a backend for Ąle

storage and versioning. Ultimately, AliECS workĆow con-

Ąguration data consists of task descriptor Ąles and workĆow

template Ąles, and these are arranged in repositories. An

AliECS workĆow conĄguration repository is a Git repos-

itory with two directories, tasks and workflows. Each

of these directories contains a Ćat structure of YAML Ąles:

task descriptors and workĆow templates.

Every task descriptor Ąle is a YAML document which

describes how to launch and control a single task, such as

an O2 data-driven process. This kind of Ąle contains in-

formation such as the path to an executable, command line

arguments, environment variables, state machine type (i.e.

whether the process uses the FairMQ state machine or the

AliECS native state machine), available bound channels (for

incoming connections) etc.

Every workĆow template Ąle is a YAML document which

describes the structure of a workĆow of roles and (ultimately)

tasks. This structure directly expresses the control tree,

which deĄnes the layout of the distributed state machine.

The input processing mechanism which loads a workĆow

template into memory to generate a workĆow (which is in

turn associated with an environment) provides several fa-

cilities to aid in workĆow deĄnition, such as iterators (to

generate a sequence of integer-numbered roles) and hierar-

chical channel references (to describe task-to-task data Ćow

channels in terms of their relative locations in the workĆow

rather than static labels).

The workĆow template format is not primarily intended

as a data interchange format: it is rather the human-readable

representation of a curated structure of tasks to be run by

AliECS as an environment. The O2 DPL (Data Processing

Layer) [22], used by O2 task developers as a framework for

building stateful data-driven device topologies is capable of

generating AliECS-compatible workĆow templates, starting

from its own process topology description mechanism.

YAML has been proven advantageous for this kind of con-

Ąguration structure because of its expressiveness, because

of the fact that it is easily readable and editable by a human,

and because of the availability of mature serialization and

deserialization facilities available for Go, C++ and other

languages.

Due to the need for reproducibility and thorough documen-

tation of experiment operations, the O2 computing system

includes a bookkeeping system under development, called

Jiskefet (a diferent system with similar functionality was

used in ALICE Runs 1 and 2). WorkĆow and task descrip-

tors are critical conĄguration data on experiment operations,

so it is necessary to persist either this data or a permanent,

versioned reference to this data to the bookkeeping system.

It is also of interest for experiment operations to be able to

move back and forth between workĆow conĄguration revi-

sions, and to be able to easily test alternatives. The choice

of Git as versioning and Ąle storage mechanism was driven

by a need for versioning and structure. As an alternative,

a variety of database and key-value storage systems were

considered, including MongoDB [23], CouchDB [24] and

Consul. While their use might have made simple querying

somewhat more straightforward, an additional layer would

have been needed in order to provide versioning.

By using Git, a state of the art versioning mechanism

is available out of the box, allowing users to manage their

own workĆow conĄguration repositories and branches. The

directory structure of a workĆow conĄguration repository is

enforced by the AliECS core when the user adds a repository,

and the AliECS API presents each repository as a stateless,

read-only conĄguration source.

WorkĆow conĄguration is complemented by AliECS run-

time variables, which can afect the loaded workĆow and

single tasks.

O2 Tasks Configuration AliECS implements task con-

Ąguration as a push operation, as opposed to a pull from the

task itself. By implementing a push mechanism in AliECS,

it is ensured that task conĄguration is a time-constrained

event associated with a state transition, restricting the free-

dom of task developers to query a conĄguration repository

at any time and thus inadvertently store hidden state infor-

mation in the task in question. Every task conĄguration is

delivered as a payload with the CONFIGURE transition event.

This payload includes communication channel conĄguration

(i.e. hosts and ports to connect or bind) plus an optional

key-value map of application-speciĄc conĄguration data.

The latter comes from Consul, and its content can also be

afected by AliECS runtime variables, much like workĆow

conĄguration.

The AliECS command line interface (coconut) allows

O2 task developers to import their application-speciĄc con-

Ąguration into Consul. An ad-hoc library within AliECS

makes sure that conĄguration import operations validate the

incoming data and place it within a pre-deĄned structure. In

this way, all O2 task conĄguration data is arranged in a tree,

by component (i.e. the kind of task, such as "readout" or

"quality-control"), conĄguration entry name, and timestamp.

In this mechanism, each component name identiĄes a kind of

O2 task, and each entry is a key which identiĄes an imported

YAML, JSON, TOML or INI document, with the timestamp

pointing to each of its revisions. The coconut interface

also exposes some querying capabilities implemented in the

AliECS core, which allow the user to browse the O2 com-

ponent conĄguration repository, including the modiĄcation

history of every conĄguration entry.

By storing O2 component conĄguration in Consul, we

accept a limitation of 512 KB per conĄguration document.

We however keep the option for application users and de-

velopers to include comments and formatting inside their

conĄguration documents, and we make it possible for O2

components to query Consul directly.

O2 Process Control

Most O2 processes are also FairMQ devices, i.e., programs

that make use of the FairMQ library for its state machine and

I/O facilities. Since DPL relies on FairMQ as underlying
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AliECS GUI
AliECS CLI

gRPCAliECS
          core

schedulerׁ׀                    

executor 

FairMQ-based O² process

O² Control and Configuration FairMQ plugin
Mesos transport

gRPC
FairMQ transition event  event

event

FairMQ
transitioner Transition response

TransitionϟsrcState, eventϠ

Build event response

Check conditions for transition

Request transition
if event is CONFIGURE, also push propertiesׁ׀

Wait for and process device state changes

AliECS Environment state machine
AliECS Task state machine

FairMQ Device
state machine

AliECS           FairMQ
states/transitions
translation and wrapping

direct
transitioner

Figure 4: The AliECS executor integrates modular com-

ponents called transitioners. These units act as translation

wrappers between AliECS states and events, and the states

and events of the state machine of a speciĄc controlled pro-

cess. In the Ągure above the executor has loaded the FairMQ

transitioner, which drives the state machine of a FairMQ-

based process.

framework, DPL devices are also FairMQ devices, which

makes FairMQ a common denominator among O2 tasks.

FairMQ provides a plugin system, which is capable of

loading the purpose-built O2 control and conĄguration plu-

gin for FairMQ devices. This plugin enables any FairMQ

device to accept control commands from an AliECS execu-

tor (see Fig. 4). The OCC plugin takes control of the process

on startup, and starts a gRPC server on a speciĄc TCP port

as instructed by the AliECS executor. When the OCC plugin

receives a remote procedure call from the executor, it drives

the state machine of the FairMQ device and reports back.

The OCC plugin is also capable of pushing conĄguration

key-value pairs as FairMQ properties to the FairMQ con-

Ąguration map of the device. This functionality is used for

channel conĄguration, as well as for any other runtime value

that needs to be pushed to a task, including run numbers and

O2 component speciĄc conĄguration.

O2 tasks are started on demand when the roles of an envi-

ronment require them, and by default they are killed when

their environment is disbanded. Optionally, upon environ-

ment shutdown the tasks can be kept running, and tracked in

an idle tasks pool, ready to be reconĄgured and used without

additional deployment steps. Thus, since automatic port

assignment and other crucial data Ćow setup operations hap-

pen at task conĄguration time rather than at task startup, it

is possible to destroy an environment, modify the workĆow

template or components conĄguration, recreate an environ-

ment with some of the same task descriptors, and resume

operation without having to redeploy all tasks.

AliECS IN RUN 3 DETECTOR

COMMISSIONING

In order to facilitate deployment in ALICE Run 3 detec-

tor commissioning setups, an Ansible-based [25] installa-

tion system for AliECS and other O2 components is being

developed. This installation mechanism can be used via

Foreman [26], a server lifecycle management solution, or

through a custom command line installer tool for small-scale

setups.

We expect to use these deployment tools throughout the

O2/FLP facility, and some of them have already been used for

detector commissioning setups, including both single-node

and multi-node AliECS instances.

AliECS instances for detector commissioning tasks in-

clude setups for ALICE detectors TPC, ITS and MFT. Some

of the major challenges we encountered include:

1. the fact that AliECS is often deployed in an environment

where ALICE detector teams already have their own

tooling and scripts, which complicates integration;

2. the fact that IPC interfaces between AliECS and the

DCS, and between AliECS and the trigger system arenŠt

in place yet, which requires workarounds;

3. the fact that AliECS instances for detector teams need

to be deployed either of-premises, or on-premises but

in diferently conĄgured network environments, which

complicates automation and support intervention;

4. the fact that AliECS integrates with a multitude of O2

components, which makes integration testing critical

for successful releases.

We have promptly reacted to these challenges by collect-

ing further requirements from detector teams, and by more

clearly communicating the potential integration points be-

tween detector team tooling and AliECS components. We

have extended and improved coconut, which can easily be

called within shell scripts to direct AliECS behavior, and we

have engaged to extend AliECS so it can also execute generic

commands, as opposed to only stateful OCC-compatible

tasks.

We have further extended and reĄned our Foreman-based

system conĄguration management facilities, and we have

started work on a new Ansible-based multi-node installer

system written in Go, as a replacement for the previously

used wrapper script. A high level testing mechanism for the

Ansible roles which install AliECS and other O2 components

was also developed, in order to spot integration issues as

early as possible.

CONCLUSION

We propose a new, custom built, microservices oriented,

integrated solution for ALICE experiment control as well

as for cluster control in the FLP facility of the O2 comput-

ing system. We assert that the leap to O2 is an opportunity

for a broad technical refresh by leveraging modern cluster

resource management and IPC technologies for a high per-

formance, low latency ECS.
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By taking advantage of Apache Mesos, we gain resource

management, control message transport, events, and more,

with the goal of achieving improved operational Ćexibility.

On top of this framework, we implement a distributed state

machine mechanism, with an expressive conĄguration for-

mat and a modular process control stack for maximum com-

patibility in an inevitably heterogeneous context. We employ

open source cross-platform and cross-language technologies

such as gRPC, Git and Consul to maximize interoperability

and minimize technical risk.

We aim to maximize the usage of LHC beam time while

ensuring optimal resource allocation in the new O2 facility

for both synchronous and asynchronous data-driven work-

Ćows. AliECS takes direct control over the O2/FLP facility,

and interfaces with the O2/EPN cluster control to gain high-

level oversiught of the whole data readout chain. With our

design approach we aim to achieve substantial performance

improvements and operational beneĄts in mission critical

use cases compared to the previous system.
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