
AUTOMATED TESTING AND VALIDATION
OF CONTROL PARAMETERS*

P. Kankiya†, J. P. Jamilkowski, A. Sukhanov
Brookhaven National Laboratory, Upton, USA

Abstract
The BNL CA-D controls environment has recently been

adopting modern programming languages such as Python.
A new framework has been created to instantiate setting
and measurement parameters in Python as an alternative to
C++ and Java process-variable-like objects. With the help
of automated testing tools such as pyTest and Coverage, a
test suite is generated and executed before the release of
Python-based accelerator device objects (ADO) to assure
quality as well as compatibility. This suite allows develop-
ers to add custom tests, repeat failed tests, create random
inputs, and log failures.

INTRODUCTION
A particle accelerator machine is a collection of large

number of hardware equipment that form the basic layer of
control system software. The control access to these instru-
ments at collider accelerator department of Brookhaven
National Laboratory is provided by a logical device object
known as ADO (Accelerator Device Object) [1]. ADO is a
C++ container type class which provides a software view
of a collection of collider control points known as parame-
ters. These parameters are the basis of supervisory control
, data acquisition and monitoring. Parameters are software
entities derived from a base class with several properties
that constitute the metadata of each instantiated control and
measurement object. These objects when added to the con-
tainer class represent the controls framework. By assuring
that creation of these parameters is of a certain standard of
quality- will help to prevent crashes in operational time and
hence down time of beam.

Large part of testing of this framework is exercised man-
ually at the time of creation of ADOs. The steps to test the
properties associated with each parameter are repeatable
and therefore should be automated. Automation of testing
software provides benefits such as repeatability, reliability,
and report generation. Several open source tools are rich in
features that can make the unit testing of ADOs seamless.
One such tool in consideration is pyTest [2].

ROADMAP OF UNIT TESTING OF ADOS
The testing phase is broken down into five steps that

should be carried out to before release of ADO software as
a best practice. These steps are depicted in Fig. 1.

Phase 1 requires preparation of test data in general unit
testing terms this phase is referred to as set up phase. Once
the test data is available and expected format it should run

through all the respective test suites, which is phase 2. This
phase concludes the quality assurance phase testing. This
step will assure ADOs are compatible with most of the con-
trol’s framework in place.

Figure 1. A general guideline to maximise coverage of tests
to follow for creating unit tests for ADO parameters.

Figure 2: A generic ADO called simple containing a large
number of parameters.

System Under Test
The snapshot in Fig. 2 shows the variety of parameters

under test ADO. This ado called simple ADO is used to
perform testing upon. Parameters here vary from being
configuration data , numeric normative types, strings to ar-
rays of such basic data types.

*Work supported by Brookhaven Science Associates, LLC under Contract
No. DE-SC0012704 with the U.S. Department of Energy.
†pkankiya@bnl.gov

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR04

Software Technology Evolution
WECPR04

943

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 3: Code snippet describing displaying a fixture written for testing a parameter property associated with numeric
data type control parameters.

GENERATING TESTS
With help of the concept of fixtures (see Fig. 3) which

allow for variables to persist through out a test session,
pyTest [2] provides for setup and teardown of test environ-
ment. The test cases are categorized into following:

1. Test of metadata of parameters
2. Test of set and get methods of each parameters
3. Tests for benchmarking expected outputs
4. Test customized for functionality

Tests for Metadata
At the very basic each parameter is expected to be pos-

sessing of a valid value, description and readability mode.
Based on the normative type the valid values for these can
be predicted. The pyTest suite would fail if these properties
are not set up with one of the expected settings. The test
suite for metadata testing is contained in a sperate file. The
file can be executed by pyTest with ado name provided as
a command line input. At the start of the test execution, a
fixture generates and maintains a list of parameters and its
properties to be tested. These collections are stored in a py-
thon list. An individual unit test is written for each prop-
erty. For example , when testing for engineering limits of
numeric data types - simple checking if the return value is
numeric will report the test as passed. When a parameter
does not have this value set, the test is failed.

Test for Set and Get Methods
All control parameters when updated with a value invoke

set or get methods based on their category being a setting
or a measurement. In case of ADOs these methods are re-
ferred to as setcode and getcode. The return value of these
member methods is defined by set of error codes. A test
suite is added to the file for testing setcodes which provides

for randomly generated test inputs based on properties set
on the parameter which can be extracted from the metadata.
Again, a fixture is used to extract parameters that are setta-
ble and to maintain this list throughout the test session.
pyTest also allows for catching warning and exceptions in-
stead of errors are reported appropriately. A similar strategy
is adopted to create unit test for measurement parameters
and their returned values are compared with expected to
validate the member function.

Test for Benchmarking
ADO as a class is instantiated at multiple machine inter-

faces. To generalise the tests of each instance without man-
ual execution of test suite for individual ADO a feature of
pyTest called parameterisation is utilised. Parameterisation
is the process of providing collection of input values for a
given test stub and the expected output value. This can sig-
nificantly reduce developer efforts to deploy ADOs at a
large scale and catch errors that human eyes can miss. For
example, when deploying an ADO for controlling magnet
power supplies which can exist at the order of hundreds of
ADOs a list of operation limits of the hardware must be
enforced. To provide a parameterised list of input a simple
decorator “@pytest.mark.parameterise” is added before
the test function and a list of inputs is attached.

Custom Tests
A separate test file containing fixtures of generating ado-

metadata is created where test stubs for testing business
logic of the ados can be added. These tests can include test-
ing of sub functions that ados invoke while interacting with
the hardware. Pre-written test fixtures allow for easy inte-
gration of custom tests.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR04

WECPR04
944

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Advantages of pyTest
By utilizing various command line switches of pyTest,

the failed tests are extremely well documented with an ex-
act reason of mismatch in return value and expected value
as well as tracebacks. pyTest avails plug-in installations
such as coverage.py and hypotheses. Coverage is a tool to
analyse the amount of code that has been tested. It is good
for generating HTML reports.

Challenges of Automation in Controls
Several bottlenecks of automation had to be overcome

because controls system consists of the various hardware
and software components and the availability of these com-
ponents depend upon the operational status. Specifically,
hardware components are not always available for testing
and simulating the hardware components require extra ef-
fort and can require software development . Also, control
system of measurement and data and control system is non-
deterministic, writing tests based on expected values can
requires a lot of tolerance. Finally, in case of CAD the ADO
infrastructure is written in a domain specific language
which makes it harder to interface with industry tools.

CONCLUSION
A sample ado comprising of all parameter types was

made to run through the test routine. Several parameters
missing properties were uncovered pyTest provided a
seamless test framework creation software that can be used
used for quality assurance, benchmarking, as well as re-
gression testing. The ability to customise every test session
is valuable.

REFERENCES
[1] L.T. Hoff and J.F.Skelly, “Accelerator Devices at Persistent

Software Objects,” Nucl. Instr. and Meth. in Phys. Res. A,
vol. 352, pp. 185-188, Dec. 1994.
doi:10.1016/0168-9002(94)91494-X

[2] Parametrizing fixtures and test functions,
https://docs.pytest.org/en/latest/
parametrize.html

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR04

Software Technology Evolution
WECPR04

945

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

