
EPICS 7 CORE STATUS REPORT*

A. N. Johnson†, G. Shen, S. Veseli, Argonne National Laboratory, Lemont, Illinois, USA
K. Shroff, Brookhaven National Laboratory, Upton, New York, USA

T. Korhonen, European Spallation Source ERIC, Lund, Sweden
H. Junkes, Fritz Haber Institute, Berlin, Germany

M. G. Konrad, FRIB, East Lansing, Michigan, USA
R. Lange, ITER Organization, St. Paul lez Durance, France

S. M. Hartman, K. U. Kasemir, Oak Ridge National Laboratory, Oak Ridge, USA
M. A. Davidsaver, Osprey DCS LLC, Ocean City, USA

M. R. Kraimer, Osseo, USA
K. H. Kim, SLAC National Laboratory, Menlo Park, USA

Abstract
The integration of structured data and the PV Access net-

work protocol into the EPICS toolkit has opened up many
possibilities for added functionality and features, which
more and more facilities are looking to leverage. At the
same time the core developers also have to cope with tech-
nical debt incurred in the race to deliver working software.
This paper will describe the current status of EPICS 7, and
some of the work done in the last two years following the
reorganization of the code-base. It will cover some of the
development group's technical and process changes, and
echo questions being asked about support for recent lan-
guage standards that may affect support for older target
platforms, and adoption of other internal standards for cod-
ing and documentation.

EPICS 7
The first version of the EPICS Control System Toolkit

[1] that was officially named “EPICS 7” was released in
December 2017, fulfilling a request from the EPICS com-
munity for a single downloadable software package that
contained the core EPICS Base code and the extra “EPICS
Version 4” C++ modules (now called “PVA modules”) that
support structured data and the pvAccess network protocol.

In the two years since that release, members of the de-
velopment team have been adding features to the core, de-
bugging and re-engineering the new modules, and improv-
ing the integration between the different parts of the code-
base. Some code that will not be developed any further has
been unbundled from the core and published separately as
stand-alone modules.

Release History
The new 7.0 release series replaced the 18-month old

Base-3.16 series, and prompted the closing of the 16-year
old Base-3.14 series to reduce the maintenance burden on
the limited number of core developers. The Base-3.15 se-
ries will continue to be maintained for sites using older
hardware and operating systems that cannot support newer
C++ compilers.

Table 1 lists the versions of EPICS Base that have been
released in the last two years.

Table 1: EPICS Releases from December 2017

Version Release Date Description

3.14.12.7 2017-12-15 Stable, bug fixes

3.14.12.8 2018-09-14 Final 3.14 release

3.15.6 2018-10-11 Stable, bug fixes

3.16.2 2018-12-12 Final 3.16 release

7.0.1.1 2017-12-15 First 7.0 release

7.0.2 2018-12-17 Modules rejoined, APIs

7.0.2.1 2019-03-20 Bug fixes

7.0.2.2 2019-04-23 Bug fixes

7.0.3 2019-07-31 Bug fixes, API changes

Source Code Repositories—: Each release series is
maintained on its own branch of a Git [2] distributed ver-
sion control system repository, but the new PVA modules
each have their own separate Git repository which is inte-
grated into the main one as a Git submodule. The master
repository is on Launchpad.net [3] along with the main EP-
ICS bug-tracker, but is also mirrored to a repository on
GitHub [4] where the PVA submodules are kept.

Continuous Integration—: During initial development
of the PVA modules they were built and tested in multiple
configurations against the different release series of Base
using a Jenkins [5] Continuous Integration server running
on a commercial cloud-based service, and also by a Jenkins
server hosted at Argonne which tested builds on different
operating systems. The commercial service has now been
replaced by Travis CI [6] and Appveyor [7], which are both
free for use by open source software projects and integrate
well with GitHub.

Release Frequency—: After EPICS 7.0.2 was published
the developers agreed to try releasing new versions more
often, generating bug-fix releases instead of publishing
patch files when important fixes became available. This
policy is getting some push-back from sites that prefer to
apply patches to their existing installations than to import
and build a completely new version.

* Work supported by U.S. Department of Energy Office of Science,
under Contract No. DE-AC02-06CH11357

† Andrew Johnson <anj@anl.gov>

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR01

Software Technology Evolution
WECPR01

923

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

SOFTWARE DEVELOPMENT
Just over 600 non-merge commits have been made to the

7.0 repository branch since December 2017, and over 1400
counting commits to the PVA modules as well.

Repository Restructuring
An important early change involved restructuring the

main Git repository to simplify modifications that affected
two or more of the core submodules. When the 7.0 branch
was first created the individual core modules (the Common
library ‘libCom’, Channel Access ‘ca’, and the process da-
tabase ‘ioc’) were checked out in the source tree as Git sub-
modules from separate branches of the main repository.

Unfortunately, this arrangement made it impossible to
commit or review changes that modified code in more than
one module at once, which is a fairly common requirement
when working on the core modules. As a result, these
branches were soon recombined into the main 7.0 branch,
although for several releases they continued to be config-
ured as if they were still separate stand-alone modules.
This independent module configuration has now been re-
moved which reduces some file duplication and may speed
up the build slightly.

Unbundling the Portable CA Server
The Base 3.15 series included the code for the Portable

Channel Access Server (PCAS) and its associated General
Data Descriptor library (GDD) which provided the ability
for other software to publish process variables (PVs) over
the Channel Access (CA) network protocol. This code was
unbundled in the 7.0.1 release as it was not easy to use or
work with and the core developers want to encourage the
use of the new PV Access protocol instead.

The GDD and PCAS software have been made available
as a separate support module available from GitHub [8].
Version 4.13.2 was released in September 2018, the major
version number referring to the CA protocol version it im-
plements.

Common Library Developments
The epicsThread OS-interface API gained a new routine

on all platforms called epicsThreadJoin(), which allows a
parent thread to wait for a specific child thread to exit. This
functionality has always been available in the epicsThread
C++ class but wasn’t provided for C code until now.

The General Time service that allows multiple time pro-
viders to be registered has learned a short-cut when only
one-time provider is actually present. This configuration is
common on workstation operating-systems, and the short-
cut significantly reduces how long it takes to read out the
current wall-clock time.

Various timer implementations have been changed to use
the monotonic OS clock API that was recently added to all
platforms. This should prevent these timers (and hence the
CA library and the IOC’s periodic scan threads) from freez-
ing if time synchronization problems occur.

A third-party JavaScript Object Notation (JSON) [9]
streaming parser has been included in Base since the 3.15

series, but the original code could only handle 32-bit inte-
ger values and EPICS now supports 64-bit numbers. The
parser has been updated to the latest version which sup-
ports 64-bit integers, but its author appears to have aban-
doned it and has not responded to bug reports or code con-
tributions though the GitHub project [10] since 2015. Sev-
eral enhancements to the original library have been devel-
oped for future use by EPICS so the parser can now support
most features of the newer JSON5 standard [11]. These
changes have been offered upstream in a pull-request [12],
but no response has been received from the author.

IOC Database Developments
The implementation of the IOC doesn’t often see major

changes that affect how it behaves, although several parts
have been refactored in recent years to allow for enhance-
ments and optimizations to the code. One recent behavior
change altered how records handle field modifications
made from outside the IOC while a record is busy.

If a put to a record field arrives from a Channel Access
client and is processed while that record is busy (i.e. its
PACT field is non-zero) the field value is changed as re-
quested and the put operation also sets the record’s PUTF
field to a non-zero value. Later when that record processing
gets completed, the IOC checks the PUTF field, sees that
it’s non-zero and arranges for the record to get processed
again, ensuring that the effect of the field’s update has been
properly reflected in the state of the database.

The behavior described in the previous paragraph has
been in place since 2002 or before, but the code failed to
handle cases where the busy record was not the direct tar-
get of the put but was downstream of it, through one or
more database links – in that case no reprocessing would
occur. This short-coming has now been rectified by also
propagating the PUTF state to other records processed by
the target record through database links.

Another significant change which has not appeared in a
released version yet strengthens the implementation of the
IOC’s Access Security module, which limits who can ac-
cess and make changes to the Process variables (PVs) in an
IOC that has this optional feature turned on. Previously an
IOC would check the hostnames in its security rules against
a hostname provided in a network packet sent by the client
itself, which could easily be spoofed. The change lets an
IOC be configured to check its client’s IP addresses in-
stead, doing a DNS lookup of the names in its security rules
and comparing the resulting addresses with the source ad-
dresses of the packets sent by the clients.

New JSON link types have been added to allow reading
and writing of dbState values and inject calculations into
the read or write path to/from other link types, and also link
types to enable debugging and tracing during link type de-
velopment work. The development of these triggered some
improvements and fixes to the extensible link type APIs
that had been added for the Base 3.16 series but have not
been used much yet.

The Macro Substitution and Include (MSI) program has
been revised to clean up some memory leaks and converted
from C to C++ code. An earlier fix for a bug reported in the

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR01

WECPR01
924

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

program was later discovered to cause it to reject some
valid and previously accepted input files. This was fixed
and checks for the affected substitutions file syntax were
added to the regression tests for it.

The IOC code has also gone through a number of smaller
changes including cleaning up the implementation of some
internal subsystems and adding more checks to some IOC
shell command arguments, to prevent IOCs from crashing
if commands are given bad parameters or are run at times
when the IOC isn’t ready to accept them.

PVA Module Developments
As implied above there were actually more commits

made in the last two years to the PVA modules than to the
original Core software modules. This follows a change of
maintainer for the main pvData and pvAccess modules
from Matej Sekoranja of CosyLab to Michael Davidsaver
of Osprey DCS.

Shortcomings were discovered in the shared_ptr object
ownership rules implemented by the C++ classes making
up the main modules, which were causing memory leaks.
A major task was undertaken to document and fix the rules,
which also resulted in additional associated fixes and API
changes in the downstream modules. Helpers were added
to track and debug ownership issues and help identity ref-
erence loops. A number of unused internal utilities were re-
moved, or in some cases deprecated in one release and re-
moved in a later one. In other cases, a few classes were
moved downstream to the only modules that actually made
use of them.

Interfaces were added to allow pvData structures to be
converted to and from JSON-encoded strings. A number of
APIs were enhanced to simplify their use or make them
thread-safe, and some new interfaces were introduced that
were designed to significantly reduce the amount of boiler-
plate code needed to access structured data and to write
both clients and servers for pvAccess. New classes were
generally designed to be able to take advantage of features
added in the C++11 language standard when the compiler
supports that, although that standard remains optional and
older compilers still work.

Some major rework was also needed to the internal func-
tionality of both pvData and pvAccess to fix problems dis-
covered with their implementations. Since the 7.0.1 release
no incompatible changes have been made to the network
protocol, although clients can no longer make connections
to servers running the earliest versions of pvAccess. As
happened with the older Channel Access protocol, care will
be taken in the future to ensure that new versions of the
pvAccess client and server library are able to communicate
with older versions.

Command-line Clients—: The pvAccess module pro-
vides a handful of command-line client programs for per-
forming simple requests against PVA servers. Most of these
programs (‘pvget’, ‘pvput’, ‘pvmonitor’ and ‘pvinfo’) have
been rewritten; one more has been added (‘pvcall’); and
another (‘eget’) was unbundled — it is still used at some
sites, but will no longer be maintained as part of the EPICS
core software.

The pvAccess APIs were designed to allow other net-
work protocols or local channel providers to be accessed
using the same API, and a Channel Access transport layer
has been part of the pvAccess module for many years. Dur-
ing some of the developments described above it was found
that the Channel Access interface layer could dead-lock in
some circumstances. These issues have been fixed.

The PVA Access Security interface classes have been
completely redesigned, and an implementation added that
sends the information used by the IOC’s Access Security
API over the network channel, thus replicating the func-
tionality that the Channel Access protocol provides.

Support for Access Security has been integrated into the
IOC’s new PVA server interface ‘QSRV’ which replaced
the older pvaSrv code, and into the new p2p gateway ap-
plication that allows traffic to cross between IP Subnets.
The QSRV module makes IOC record fields accessible
over PVA just as pvaSrv did, but it adds atomic access to
groups of records, and provides a JSON link type that uses
the pvAccess protocol to get or put data.

Normative Types—: This module provides helper clas-
ses for software to use to generate data structures that com-
ply with the data type specifications recommended for use
with PVA. Older versions of this module included some
quite strict compatibility structure checks which have since
been loosened; now any convertibly-equivalent structure is
considered to be compatible with the specification. Unfor-
tunately, a new module that sends data to older software
that is still using the stricter checks might have difficulty
communicating, although no site has reported having this
issue yet. One solution for this would be to rebuild the
older code against the newer version of EPICS 7.

The synchronous pvaClient module has seen a number
of changes to improve reliability and ease of use. Its APIs
now support access to any top-level field of a pvStructure,
not just to a top-level field called ‘value’. The module now
provides multi-channel classes that allow clients to access
multiple pvAccess PVs at once. In the future it will also
support converting data to or from JSON-encoded strings.

The pvDatabase module was designed to make it easier
to implement servers in C++ code. It has undergone similar
changes to improve its APIs, and recently added support
for plugins and record processing. The code is also more
robust against requests from rogue clients.

PYTHON BINDINGS
The Python language has become increasingly popular

in recent years for writing scientific and control-system ap-
plications, and this trend has also applied inside the EPICS
community. Several different bindings for Channel Access
were written by different people over the years, often with
different purposes or user-groups in mind, although there
was some competition involved as well. This tradition has
continued with PVA protocol bindings.

Most EPICS Python modules can now be installed from
the Python Package Index (PyPI) using the ‘pip’ program,
and in some cases from channels available using the Conda
package management system.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR01

Software Technology Evolution
WECPR01

925

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

The pvaPy module that was included with the EPICS
Version 4 release packages continues to be updated along
with the EPICS core, although the code is now being main-
tained and released separately [13]. Several new versions
of this module have been released in the last two years, the
latest version adding support for the multi-channel APIs
from the pvaClient module to do I/O against multiple PVs
at once.

A newer module named p4p [14] was written by Michael
Davidsaver when he took over as the pvAccess maintainer,
to help him document and debug the protocol. This even-
tually became a fully-functional set of bindings for easily
accessing the core PVA functionality from Python code.

Python programmers can use either module to write PVA
client or server programs (or even both at the same time),
or may call or respond to Remote Procedure Calls over
PVA. Both modules support NumPy for fast access to large
arrays.

DOCUMENTATION UPDATES
A workshop called an “EPICS Documentathon” was

held at the European Spallation Source in Sweden in early
September 2019 where the attendees worked on a number
of enhancements to the EPICS documentation, which is
currently spread over many different documents, Git repos-
itories and websites.

The individual EPICS record types were originally doc-
umented in the EPICS IOC Record Reference Manual [15]
which in 2005 was converted into a set of Wiki pages on
the EPICS Wiki [16] hosted at Argonne, under the theory
that it would be easier for community members to maintain
them that way. Before the EPICS 3.15 release it became
clear that an alternative approach was needed, and tooling
was added to some of the core software to extract and gen-
erate HTML documentation from the DBD files that de-
scribe the individual record structures at build-time, as this
would allow the field descriptions to be taken directly from
the record type sources, guaranteeing they would always
be up to date. The work of converting the Wiki pages into
the DBD files in Perl’s “Plain Old Documentation” (POD)
format was completed at the Documentathon, although the
results have not yet all be merged into the Base repository.

Other IOC reference documentation has been main-
tained in the EPICS Application Developers Guide [17]
which had been converted from FrameMaker into LaTeX
format in 2010. The most useful parts of this document are
now the descriptions of the APIs provided by the Common
Library (libCom) module, and modern tools make it easier
to maintain these kinds of descriptions by generating them
from annotated source code. Another project worked on at
the Documentathon was to extract API descriptions from
the Guide and turn them into source code annotations for
use by the Doxygen [18] documentation generator. This
project is expected to take a number of years to complete.

The PVA modules have been annotated for Doxygen as
they were being developed, but some additional documen-
tation was published on the EPICS V4 website which is no
longer being maintained and will eventually be archived.

The useful files have been rescued, reformatted and inte-
grated into a new EPICS Documentation website [19] that
can publish documentation from any EPICS-related project
that is properly configured to use the public “Read The
Docs” [20] website and service. In addition to publishing
the Doxygen output from the PVA modules a number of the
more useful and up-to-date “how-to” documents from the
EPICS Wiki are also being maintained as Restructured Text
documents in a separate GitHub repository [21] and are au-
tomatically published to the new website.

FUTURE DIRECTIONS
The documentation update work described above will

continue as effort is available to contribute to it, with more
Doxygen annotations being added to the core header files,
and the descriptions of the individual record types being
brought up to date with the code. Plans need to be devel-
oped on what to do with other sections of the IOC Appli-
cation Developers Guide.

Not described in this paper is a project currently under
way for the Java implementation of pvData and pvAccess
which involves rewriting and simplifying a significant pro-
portion of the data container and networking code. The
original APIs and implementation of these do not follow
modern Java conventions, and they are seen as hard to un-
derstand and use. A project has been proposed to do a sim-
ilar rewrite of the C++ pvAccess implementation, since its
internal structure has equivalent problems that the piece-
meal reworking done to date are insufficient to fix.

The IOC Database code currently supports a wider set of
data types than the Channel Access protocol (64-bit integer
types were added for the Base 3.16.1 release for example),
but it doesn’t currently have a way to handle structured
data types. With the addition of the PVA modules to the
EPICS core there is a desire for the IOC database to be able
to store and transport the larger and more complex data
types they handle, although how this can be done remains
to be devised.

The question has been asked by developers more than
once about being allowed to use features available in the
modern C++ language standards C++11 and C++17. The
answer to this affects the target architectures that EPICS
can be compiled for. The architecture with the oldest com-
piler is currently VxWorks 6.9 which has a gcc-4.3.3 cross-
compiler that provides a few C++11 features. The latest
VxWorks 7 release appears to offer C++17 compatibility,
but no EPICS sites are known to be using any VxWorks 7
release yet. The community will have to take this step at
some point but some core developers are reluctant to do so
as it could cut off a significant number of existing users, or
force them to expend effort upgrading the operating system
for older systems to be able to run the most recent versions
of EPICS.

CONCLUSION
Since its first release in December 2017, the EPICS 7

software and documentation has seen a significant amount
of development work, bug fixes and improvements. There
is still technical debt in the code-base, from both the older

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR01

WECPR01
926

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

core libraries and the PVA modules, but by making it easier
for those outside of the core group to contribute we hope
to grow the number of developers and users who can help
to continue the 30-year collaboration that is EPICS.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the contributions of

the EPICS Council, all EPICS developers, Documentathon
participants and our users, who all contribute in one way or
another to the continued development and popularity of the
EPICS 7 toolkit.

REFERENCES
[1] New EPICS website, https://epics-controls.org

[2] Git version control system, https://git-scm.com

[3] EPICS Base project pages on Launchpad,
https://launchpad.net/epics-base

[4] EPICS Base main repository on GitHub,
https://github.com/epics-base/epics-base

[5] Jenkins Continuous Integration system ,
https://jenkins.io/

[6] Travis CI service,
https://travis-ci.org/epics-base

[7] Appveyor CI service, https://ci.appveyor.com/
project/epics-base/epics-base

[8] PCAS, the Portable Channel Access Server,
https://github.com/epics-modules/pcas

[9] JavaScript Object Notation, http://json.org/

[10] Yet Another JSON Library project on GitHub,
https://github.com/lloyd/yajl

[11] JSON5 Data Interchange Format, https://json5.org/

[12] GitHub Pull Request: Add Support for JSON5,
https://github.com/lloyd/yajl/pull/211

[13] GitHub Project for the pvaPy module,
https://github.com/epics-base/pvaPy

[14] PVAccess for Python (P4P) project on GitHub,
https://github.com/mdavidsaver/p4p

[15] Janet B. Anderson and Martin R. Kraimer, “EPICS IOC
Record Reference Manual,” EPICS Release 3.12, Advanced
Photon Source, Argonne National Laboratory, April 1996

[16] EPICS Wiki, https://wiki-ext.aps.anl.gov/
epics/index.php/Main_Page

[17] Martin R. Kraimer et al., “EPICS Application Developers
Guide,” EPICS Base Release 3.16.2, October 2018

[18] Doxygen documentation generator website,
http://www.doxygen.nl/

[19] EPICS Documentation website, https://docs.epics-
controls.org/en/latest/index.html

[20] Read The Docs service, https://readthedocs.org/

[21] How-to pages on the EPICS website GitHub project,
https://github.com/epics-docs/how-tos

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPR01

Software Technology Evolution
WECPR01

927

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

