
MIGRATING TO TINY CORE LINUX IN A CONTROL SYSTEM

R. A. Washington, ISIS, Rutherford Appleton Laboratory, Didcot, U. K.

Abstract
The ISIS Accelerator Controls (IAC) group currently

uses Microsoft Windows Embedded Standard 2009 (WES)
as its chosen Operating System (OS) for control of front-
line hardware. Upgrading to the latest version of Microsoft
Windows Embedded is not possible without also upgrading
hardware or changing the way that the software is delivered
to the hardware platform. The memory requirements are
simply too large for this to be considered a viable option.
A new alternative needed to be sought; which led to Tiny
Core being selected due to its frugal memory requirements
and ability to run from a RAM disk. This paper describes
the process of migrating from Windows Embedded Stand-
ard to Tiny Core Linux as the OS platform for IAC hard-
ware.

A NEED TO UPGRADE
The ISIS Control System uses Vista Control Systems [1]

Vsystem software as the primary user interface. The Con-
trol System [2] monitors some 29,000 values, the majority
of which are acquired through custom hardware designed
by the ISIS Accelerator Controls (IAC) group. The latest
version of this hardware is the IAC CompactPCI Standard
(CPS) system which run Microsoft Windows Embedded
Standard 2009 (WES) as the embedded Operating System
(OS) and platform for the CPS software handlers. The CPS
systems have been very reliable but the extended support
for WES ended on January 8th 2019 meaning that an up-
grade to the OS was already well overdue.

A NEW PLATFORM
CPS systems are built around a CompactPCI backplane

with slots for up to seven peripheral cards and a system slot
containing a processor card. CPS processor cards that are
currently used are the Kontron [3] CP305, CP306 and
CP3004.

The natural choice for the new OS, given the previous
experience of the IAC group, was to pursue the latest em-
bedded version of Microsoft Windows, Windows 10 IoT
Enterprise. However it quickly became clear that this OS
would not meet the particular deployment requirements.
The CPS systems are required to remotely acquire an OS
image over the network and continue to run the OS as a
RAM disk. This is because conventional hard disk drives,
specifically the disk controllers, fail due to radiation within
the area of the inner synchrotron. To this end, the OS image
is downloaded via Pre-boot Execution Environment (PXE)
into the on-board RAM of the processor card, where it con-
tinues to run as a RAM disk.

All this is possible in Windows 10 but the size of the
Windows 10 OS image footprint (typically around 8 GB)
is far greater than that of the WES image (350 MB) and
therefore requires more available RAM on the processor
card. For reference, the older CPS processor cards have just

1 GB of available RAM. A decision was made to look at
alternative OS solutions that have a smaller footprint and
therefore smaller RAM requirement.

A comparison of several Linux distributions resulted in
Tiny Core (TC) [4] being selected as the new platform. TC
is a minimal Linux distribution and has the added ad-
vantage of being designed to run completely from a RAM
disk.

THE CPS SERVICE
The CPS Service is a software manager that handles

hardware reads and writes that have been initiated by Vsys-
tem. It provides the link between the hardware in a CPS
system and the control screen operated by the end user. The
flowchart for the CPS Service is illustrated in Fig. 1.

Figure 1: CPS Service flowchart.

The CPS Service code is organised into three projects:
CPSService, HTTPServer and PCIDeviceClasses.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPL05

WECPL05
920

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Upgrades

CPSService
This is the main thread. The HyperText Transfer Proto-

col (HTTP) Server is started in a separate thread while the
main thread enters the service loop. This will run indefi-
nitely until a stop signal is received. Each CPS system is
defined by a local database containing ‘channels’ that rep-
resent items to control or monitor. The service loop iterates
through the database until all the database channels have
been processed. This process then repeats.

HTTPServer
The HTTPServer contains the code for communication

over the ISIS Controls network with Vsystem. The CPS
systems communicate by passing Extensible Markup Lan-
guage (XML) files over HTTP. The web server also pro-
vides the valuable ability to view the database contents of
a CPS system in a web browser for diagnostics and moni-
toring purposes.

PCIDeviceClasses
The PCIDeviceClasses project contains all the applica-

tion specific code for the various CPS peripheral control
cards.

BUILDING A TINY CORE IMAGE
The CPS Service was originally written for a Windows

OS environment [5]. As a result it relied heavily on various
Microsoft libraries and Microsoft XML Core Services
(MSXML).

Before the transition to TC could take place, the CPS
Service project needed to be refactored to remove all Win-
dows-related dependencies and apply modern (C++17)
techniques to simplify the code where possible.

The outcome of this process is that the HTTP communi-
cations server and XML parsing is now provided by the
open source gSOAP XML web services toolkit [6].

The Build System
In order to create a stand-alone image for the CPS Sys-

tems that will run entirely in RAM, the initial ramdisk (in-
itrd) image requires ‘remastering’.

While any Linux distribution could be used as the basis
for a build system, TC was chosen in order for the build
and target system to have as much in common as possible.

A TC virtual machine (VM) was created using the TC
CorePlus.iso image file as the installation media. The VM
also includes the TC EZRemaster tool (available as an in-
stallation option) which allows a base TC image to be eas-
ily created and remastered.

Remastering
The process of building the TC image is relatively sim-

ple. A base image is created using the native EZRemaster
tool, then all the extra files, tools, extensions and drivers
that are necessary to build and run the CPS Service are
added.

Extensions
Extensions are software applications that provide the re-

quired additional functionality to the TC image. The fol-
lowing extensions are included in the initrd image:

• bash
• glibc_base-dev
• kmaps
• libpci
• openssh
• tzdata
bash The Bourne Again Shell is not strictly needed but

it is the most commonly used shell in Linux so is included
for convenience.

glibc_base-dev Provides the shared libraries, libpthread
and libdl, that are used by the CPS Service.

kmaps Allows the correct UK keyboard map to be ap-
plied.

libpci Provides the shared library libpci, which is re-
quired by the CPS Service code.

openssh Provides the Secure Shell (SSH) daemon which
allows for remote logging into the CPS System.

tzdata Provides time zone data so the system clock will
update in accordance with seasonal changes.

Boot Codes
Additional configuration of the system is done by in-

cluding ‘boot codes’ in the image. These are a way to con-
figure the system by providing information during the boot
process. The TC image for CPS includes the following boot
codes:

• base
• norestore
• lang=en_GB.UTF8
• kmap=qwerty/uk
• tz=Europe/London
• user=CPSAdmin
• 8250.nr_uarts=32
base This loads the base system only, without any addi-

tional extensions outside of the initrd.
norestore As each CPS System will boot a fresh image

each time, this code prevents anything being restored. In
combination with the ‘base’ boot code, it also serves to pre-
vent TC from looking for any disks to mount.

lang=en_GB.UTF8 Set the system language to British
English.

kmap=qwerty/uk This works in conjunction with the
kmaps extension to set the keyboard map to the United
Kingdom keyboard layout.

tz=Europe/London Sets the system time zone to Lon-
don.

user=CPSAdmin Configure the default user as CPSAd-
min.

8250.nr_uarts=32 The kernel is limited to 4 serial ports
by default. However the CPS System is required to support
up to 32. This code changes the default limit.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPL05

Control System Upgrades
WECPL05

921

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Other Customisations
After the extensions and boot codes have been added, the

EZRemaster tool can be used to finish the remastering pro-
cess, resulting in a directory containing the remastered im-
age.

There are now a number of manual customisations to be
done before we have the final TC image. These are:

• Add the hardware drivers and kernel modules to the
extracted directory.

• Add the CPS Service binary file.
• Add a script to start/stop the CPS Service.
• Generate the system locale using the getlocale exten-

sion and then copy the output to the extracted image.
• Set up the Network Time Protocol (NTP) configura-

tion file.
• Edit the /etc/inittab file in the extracted image to en-

sure the CPS Service software runs on start up.
• Generate a server key for SSH.
• Set a user password.
After this, the image customisation is now complete and

an initrd can be built from the extracted image directory by
following instructions in the TC documentation [4]. This
gives the initrd output, CPScore.gz.

DEPLOYING THE IMAGE
While the long term plan is to move to a Linux Remote

Boot Server; the hosting of CPS System OS images cur-
rently uses a Windows Remote Boot Service Trivial File
Transfer Protocol (TFTP) server.

The boot program that is used for booting Linux via PXE
is pxelinux.0, which is part of the SYSLINUX [7] exten-
sion (available with most Linux distributions). This file
along with ldlinux.c32 needs to be placed in the root direc-
tory of the TFTP server. A separate configuration file,
rbsprov.ini, gives details of the boot program to use for
each CPS System.

By default, pxelinux.0 looks for its configuration in the
pxelinux.cfg directory; where it looks for a file that is
named with the following (in order of preference):

1. Client’s Universally Unique Identifier (UUID).
2. Client’s Media Access Control (MAC) address.
3. Client Internet Protocol (IP) address1.
4. A file named ‘default’.

During testing, this iterative process was found to be
prohibitively long. However, it can be bypassed using the
pxelinux-options program, which is provided with SYS-
LINUX, to force the configuration file to use ‘default’ in
the first instance.

All that is left to do is copy the kernel (vmlinuz) and the
initrd (CPScore.gz) to the TFTP server and include these
file locations in the configuration file named ‘default’.

1 This is recursively checked, dropping one character each time, until
the end of the IP address is reached.

CONCLUSION
The IAC CPS hardware has now been upgraded from the

unsupported Microsoft WES 2009 to use Tiny Core Linux
as the embedded OS. This has provided the following ad-
ditional benefits:

• TC is covered by the GNU General Public License,
meaning that recurrent purchases of licenses are no
longer necessary.

• The OS is flexible and open source, with an active
open source community.

• The size of the image at 15 MB is much smaller than
the WES image size of 350 MB. This has resulted in a
much quicker boot time for the CPS systems. Typically
<45 seconds, compared to 3-4 minutes previously.

• The amount of RAM required is now ~40 MB which
is small enough to run on the oldest of the CPS proces-
sor cards; removing the need for costly hardware up-
grades.

ACKNOWLEDGEMENTS
Ben Warrington for work completed in refactoring the

CPS Service project and development of the Tiny Core im-
age.

Tim Gray for his previous work on development of the
CPS Service project.

REFERENCES
[1] Vista Control Systems, Inc.,

https://www.vista-control.com

[2] R. P. Mannix, “Vista Controls' Vsystem at the ISIS Pulsed
Neutron Source”, in Proc. 11th Int. Conf. on Accelerator and
Large Experimental Control Systems (ICALEPCS'07), Oak
Ridge, TN, USA, Oct. 2007, paper WOAA04, pp. 284-284.

[3] Kontron, https://www.kontron.com

[4] The Core Project, http://tinycorelinux.net
[5] T. G. Gray and R. P. Mannix, “Using Windows XP Embedded

Based Systems in a Control System”, in Proc. 12th Int. Conf.
on Accelerator and Large Experimental Physics Control Sys-
tems (ICALEPCS’09), Kobe, Japan, Oct. 2009, paper
THA003, pp. 636-637.

[6] Genivia, https://www.genivia.com/products.html

[7] The Syslinum Project, https://www.syslinux.org

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WECPL05

WECPL05
922

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Upgrades

