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Abstract
Recently, by using deep learning methods, a computer

is able to surpass or come close to matching human perfor-
mance on image analysis and recognition. This advanced
methods could also help extracting features from neutron
scattering experimental data. Those data contain rich scien-
tific information about structure and dynamics of materials
under investigation. Deep learning could help researchers
better understand the link between experimental data and
materials properties. Moreover,it could also help to optimize
neutron scattering experiment by predicting the best possible
instrument configuration. Among all possible experimental
methods, we begin our study on the small-angle neutron
scattering (SANS) data and by predicting the structure ge-
ometry of the sample material at an early stage. This step is
a keystone to predict the experimental parameters to prop-
erly setup the instrument as well as the best measurement
strategy. In this paper, we propose to use transfer learning to
retrain a convolutional neural networks (CNNs) based pre-
trained model to adapt the scattering images classification,
which could predict the structure of the materials at an early
stage in the SANS experiment. This deep neural network is
trained and validated on simulated database, and tested on
real scattering images.

INTRODUCTION
The fundamental properties of the neutron make it a pow-

erful tool to investigate atomic-scale structure and dynamics
of materials. Compared to other scattering techniques such
as x-ray or light, neutron has advantages such as negligible
radiation damage, exceptional penetration power and ability
to selectively highlight specific parts of materials via isotope
labelling [1]. However, because the flux of neutrons is lower
than the flux of the photons at modern light sources, long
measurement time (even tens of hours) is required for a high-
quality data collection. In this case, early decision becomes
a critical component in the experimental work flow. On the
other hand, the instrument settings of neutron scattering ex-
periments are manually decided by scientists according to
their experiences and knowledges. Due to large differences
in the level of experience of the different users, high quality
data could become difficult to obtain and quite time consum-
ing. Hence, we propose to use recent advanced machine
learning methods to help interpreting experimental data in
order to optimize effective use of limited beam time and
ence increasing science productivity.

Deep learning has become one of the most active research
field in the machine learning community since it was pre-
sented in 2006 [2]. Recently, it impacted deeply data sci-
ence, and its popularity has grown exponentially, especially
in computer vision related tasks [3]. Convolutional neural
networks (CNNs) is a well-known deep learning architecture

inspired by the natural visual perception mechanism of the
living creatures. In recent years, CNNs have been widely
adopted for a variety of applications in image classification
[4, 5], video analysis [6] and natural language processing
[7]. CNNs are widely used in image related tasks since they
present several advantages. Firstly, CNNs decompose im-
ages into multiple patches that are partially overlapped. In
this case, each cortex neuron only corresponds to a single
patch, which enables the network to classify images with
little data pre-processing [8]. Secondly, CNNs are weight
sharing, which enable CNNs share learned features from
a single sample via back-propagation with other samples.
It efficiently decreases the necessary required input sample
size and quantity [9].

In this paper we have applied transfer learning method on
a CNNs architecture based pre-trained model, to analyze and
classify neutron scattering image from SANS experiment.
This model named Inception-v3 is pre-trained on ImageNet
database. With fine-tuning, this model is first retrained and
validated by simulated scattering images, then verified on
real SANS experimental data collected at the Institut Laue-
Langevin (ILL).

METHODS
Data Simulation

To generate two-dimensional Small-Angle Neutron Scat-
tering (SANS) images we use the data reduction and simula-
tion code GRASP [10].

Figure 1: Schematic representation the steady-state instru-
ment D22 at the Institut Laue-Langevin [11].

GRASP is a MatlabTM script application designed for
the graphical inspection, analysis and reduction of position
sensitive detector(PSD) data produced by the 3 SANS in-
struments of the ILL. GRASP is using a mixed analitical
and Monte-Carlo approach for the neutron event generetion
and can include the real intrument resolution function, the
measured backgrounds from a variety of different samples
and the influence of the sample environment. By using
GRASP, we could generate simulated SANS 2D detector
images with variable sets of parameters. We could select
different materials’ structures and also freely change the in-
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strument configuration. In this work we have choosen D22
SANS instrument and its schematic layout is presented in
Fig. 1.

A large amounts of SANS diffusion patterns were obtained
from samples with geometrical structure and uniform scat-
tering length density such as spheres, cylinders, core-shell
spheres, ellipsoid and flux line bragg peak. The correspond-
ing dimensions of the geometric bodies, i.e., inner and outer
radius, length, width, height etc., were respectively randomly
and independently sampled in ranges from 10 to 800 Å. Each
instrument configuration of D22 such as sample to detector
distance, collimation distance, wavelength bands introduces
unique features in the resulting detector images. In our sim-
ulation, the sample is inserted in an empty cell filled with
background liquid: water (𝐻2𝑂) or heavy water (𝐷2𝑂).

Neural Network Model
In this paper, we have adopted transfer learning using the

pre-trained CNNs based Inception-v3 [12] architecture to
classify the 2-D neutron scattering images. Instead of creat-
ing a model from scratch, we have started from a previously
trained model able to solve a similar classification problem.
This model was known to classify an image across 1000
categories supplied by the ImageNet academic competition
with an error rate that approached human performance. The
Inception deep convolutional architecture was introduced
as GoogLeNet (Inception-v1) [13]. Since Inception net-
works are fully convolutional, each weight corresponds to
one multiplication per activation. Therefore, by introducing
factorizing convolutions in this model, Inception-v3 is able
to reduce the number of connections/parameters (42-layer
deep learning network) and similar complexity as VGGNet
[14], without decreasing the network efficiency. Inception-
v3 is a commonly used architecture for deep learning tasks.
This model is a state-of-the-art CNNs and it is widly use in
the field of computer vision. It consists of two parts:

• Feature extraction part with a CNN.

• Classification part with fully-connected and softmax
layers.

The pre-trained Inception-v3 model achieves state-of-
the-art accuracy for recognizing general objects with 1000
classes. The model extracts general features from input
images in the first part and classifies them based on those
features in the second part. The model itself is made up of
symmetric and asymmetric building blocks, including con-
volutions, average pooling, max pooling, concats, dropouts,
and fully connected layers. BatchNorm is used extensively
throughout the model and applied to activation inputs. Loss
is computed via Softmax.

In transfer learning, when we build a new model to classify
our original dataset, we reuse the feature extraction part and
re-train the classification part with our dataset. Since we
don’t have to train the feature extraction part, which is the
most complex part of the model, we can train the model with
less computational resources and training time. The work

Figure 2: Schematic diagram of Inception-v3 with transfer
learning.

flow of Inception-v3 model with transfer learning is shown
in Fig. 2.

EXPERIMENTAL RESULTS
The small angle neutron scattering instrument D22 is

used to investigate a wide range of samples, to identify their
atomic structure and composition. Hence, we classify the
samples with a 2-D scattering image at an early stage and
then, we tried to predict its structure. We have started to con-
sider four different geometrical structures: sphere, core-shell
sphere, cylinder and ellipsoid, which procuce a quite similar
scattering patterns. All the simulations are performed on
a Linux Server (Ubuntu 16.04.5) with two NVIDIA Tesla
P100 GPUs.

Experiment I: Sphere vs. Flux Line Bragg Peak
Spheres and flux-line bragg peak produce quite different

images on the detector. Unfortunately, in real experiments,
the instrument parameters are set according to a ”guess” of
the structure type and sample parameters, which sometimes
are far away from the real structure. Hence,we first try to
recognize the scattering image at an early stage without any
priori knowledge.

By using GRASP, we have generated 2000 sample images
are generated respectively for the sphere and flux line bragg
peak model. The corresponding dimensions of the geometric
bodies, i.e., radius for sphere, rocking angle for flux line
bragg peak etc. are generated in a certain range randomly
and independently.

We begin the training trail with the pre-trained model
Inception-v3. The initial weights are taken from the pre-
trained weights based on ImageNet. Only the weights of the
attached dense layers are updated. It means all layers are set
to frozen except the last dense layer. The model is compiled
with binary cross-entropy loss function for the training and
validation sets. The initial learning rate is randomly set to
0.01 and the model is trained for 300 epochs, which means
the network examined each image 300 times. For each train-
ing trail, 80% data are selected randomly for training, 10%
data are used for testing and 10% data are used for validation.

Figure 3 shows the average accuracy of classification and
loss of cross-entropy. After 200 epochs, the average accuracy
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is stable to 100%, which indicates all the simulated samples
in the dataset are corrected classified by current classifier.

Figure 3: Average accuracy (top) and validation accuracy
(bottom) of experiment I.

Then this classifier is tested on nine scattering image of
material silica sphere from real experiment. All the images
are correctly recognized with 99% confidence.

Experiment II: Sphere vs. Core-Shell Sphere vs.
Cylinder vs. Ellipsoid

The four models: sphere, core-shell sphere, cylinder and
ellipsoid geometrically are similar to each other under some
particular parameters in the structure. For example, if the
model cylinder with length 0, it becomes a sphere model.
Recognizing these four structures only from scattering image
is a challenge task.

10000 simulated scattering images are generated by
GRASP, for each individual sample structure. The corre-
sponding dimensions of the geometric bodies, i.e., length,
inner and outer radius etc. are generated randomly and in-
dependently. The dataset contains complex situation of the
models, including monodispersity, polydispersity, low reso-
lution, centralized scattering images etc...

The same pre-trained model as experiment I is applied.
Figure 4 shows the results of average accuracy and loss of
cross entropy. As a result we obtain an average accuracy of
73%.

We have employed data augmentation and fine-tuning
methods to improve the recognition accuracy. The model
is optimized by stochastic gradient descent optimizer [15],
which restarts techniques to find an optimal learning rate.
Optimal learning rate finder is basically boosts the learning
rate until the validation loss stops to decrease. Because of
limited field of view of the instrument, in real experiment,

Figure 4: Average accuracy (top) and validation accuracy
(bottom) of experiment II.

sometimes we choose to make the neutron beam arrival at
the detector with a certain bias from the center, to obtain a
larger field of view of the material structure. 2000 simulated
scattering images with beam stream arrival with certain bias
from the center are added respectively to each class.

Table 1: The Average Precision, Sensitivity, F1-Score on
the Model with Fine-tuning (Values are in %).

Classes Precision Sensitivity Score

Core-Shell Sphere 75 75 75
Cylinder 90 65 75
Ellipsoid 76 83 79
Sphere 70 85 77

Unknown 92 91 92

Table. 1 shows the average precision, sensitivity (recall),
and F1-Score of the model with fine-tuning and augmented
database. The average accuracy of this model is 79.8%,
which is better than the performance of the model without
fine-tuning. Except class unknown, the other four classes
have proximity F1-score (between 75% and 80%). This
unknown class is consisted of scattering images generated
from simulated program, without or less recording useful
scattering information by improper instrument parameters
setting. For cylinder, the precision is high 90%, which is the
ratio of correctly predicted positive observations to the total
predicted positive observations, meanwhile the sensitivity is
low 65%, which is the ratio of correctly predicted positive
observations to the all observations in actual class, turns out
similar F1-score with other classes.

Then, this classifier is tested on 9 silica sphere scattering
image, 9 cylinder scattering image, 2 ellipsoid scattering
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image and 1 core-shell sphere scattering image from real
experiment. The scattering images from real experiment
are raw data, without any pre-process. In 9 silica sphere
real scattering images, 8 image are recognized as sphere
with an average confidence value of 92%. The incorrect
classification happened on the image with less scattering
information comparing to correct classifications. For cylin-
der class, only 3 images are correctly recognized with an
average confidence 63%.

It seems that for images containing the scattering informa-
tion from the whole directions the recognition accuracy is
better than for those where the neutron beam arrived in the
center of detector. For the images which contain only little
information around beam stop, it seems difficult to recognize
among these four structures.

DISCUSSION & CONCLUSIONS
In this article, we introduced a deep learning based method

to recognize material’s structure category by its 2-D neutron
scattering image. The performance of accuracy is quite
depending on the similarity among the material’s structure.
As shown in Experiment I subsection, the classifier is able
to separate structure model with high accuracy between
sphere and flux line bragg peaks even in low resolution,
less scattering information, and low neutron beam intensity
scattering images. However to predict the scattering images
from close geometrical structures, such as sphere, core-shell
sphere, cylinder and ellipsoid, the accuracy of our classifier
decreased. From observation, the accuracy is influenced by
the quality and type of scattering images. For example, the
classifier could get higher accuracy on high resolution rather
than low resolution scattering images. Also it performs
better on scattering images with neutron beam arrival at the
center of detector which contain scattering information in
all directions rather than with center bias scattering images
for which part of the information is missing.

The training trail of deep CNNs is done on simulated
database. And the trained classifier is tested on several
raw scattering images from real experiments. With this
small among of scattering images from real experiment, we
couldn’t get solid conclusion about the performance of our
classifier. However, the result indicates the tendency that
our classifier is able to correctly recognize real scattering
images without any training samples from real scattering
data, it could work equally on simulated and real images.
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