
AUTOMATIC GENERATION OF PLC PROJECTS USING
STANDARDIZED COMPONENTS AND DATA MODELS

S. T. Huynh†, H. Ali, B. Baranasic, N. Coppola, T. Freyermuth, P. Gessler, N. Jardón Bueno,
M. Stupar, J. Tolkiehn, J. Zach, European X-Ray Free-Electron Laser, Schenefeld, Germany

Abstract
In an environment of rapidly expanding and changing

control systems, a solution geared towards the automation
of application dependent Programmable Logic Controller
(PLC) projects becomes an increasing need at the Euro-
pean X-Ray Free Electron Laser (EuXFEL). Through the
standardization of components in the PLC Framework, it
becomes feasible to develop tools in order to automate the
generation of over 100 Beckhoff PLC Projects. The focus
will be on the PLC Management System (PLCMS) tool de-
veloped to achieve this. Provided with an electrical dia-
gram markup (EPLAN XML export), the PLCMS queries
the database model populated from the PLC Framework. It
captures integration parameters and compatible EtherCAT
fieldbus hardware. Additionally, inter-device communica-
tion and interlocking processes are integrated into the PLC
from a defined user template by the PLCMS. The solution
provides a flexible and scalable means for automatic and
expedited deployment for the PLC control systems. The
PLCMS can be further enhanced by interfacing into the Su-
pervisory Control and Data Acquisition (SCADA) system
for complete asset management of both PLC software and
connected hard-ware across the facility.

INTRODUCTION
The European X-Ray Free-Electron Laser (EuXFEL) is

a research facility that aspires to provide high brilliance X-
ray beam for user experiments at six end stations with di-
verse experimental capabilities [1]. The facility is currently
home to over a few thousand devices within the multiple
photon beamlines, which are to be controlled remotely
through the use of Programmable Logic Controllers (PLC).

As such, the PLC team was formed to bring about the
design, implementation, deployment and commissioning
of over a hundred PLCs with the various hardware compo-
nents installed and/or proposed. Additionally, the PLCs are
to be interfaced with the proprietary Supervisory Control
and Data Acquisition (SCADA) system; Karabo [2], to
provide a user interface for control.

In order to meet the demands relating to the rapid de-
ployment of multiple PLC projects, it became apparent that
an automated solution was required to compile and build
the various PLC Projects. As such, the PLC Management
System (PLCMS) tool was developed. Currently, the
PLCMS performs several functions, all aimed to assist and
expedite the existing manual processes related to PLC de-

ployment. These can be largely divided into two catego-
ries: the PLC Framework and the PLC Projects, both of
which are explored in more detail throughout the paper.

Firstly, the rationale behind the PLCMS will be intro-
duced, followed by the functionality of the PLCMS, and
how some of the shortcomings within the existing PLC
generation process are addressed and resolved. Lastly,
some of the ongoing developments to further enhance the
PLCMS and its capabilities are explored.

THE PROBLEM
Since the inception of EuXFEL, there has been a rapid

campaign to bring the facility online. In order to provide a
facility where scientists can come to conduct research
where the only heavy lifting comes down to a mouse click,
many PLCs were required to be commissioned and de-
ployed within a short period of time.

The PLC projects are designed around the infrastructure,
whereby hardware components which belong to a similar
sub-system, are grouped together and allocated a PLC.
Each project is subsequently composed of standardised
“soft” components called softdevices which are essentially
a software representation of the hardware component
within the PLC. As the PLC Projects often contain over a
hundred instances of softdevices, with various initialisa-
tion and configuration parameters, this process would be-
come tedious, time-consuming and error prone.

Utilising a library of the aforementioned softdevices
would thereby enable device instantiation rather than con-
tinuous creation, and also provide a means for consistency.
To be useful however, the library needs to maintain a stand-
ardised structure or template across all the softdevices. As
the library evolves however, keeping track of changes
within each softdevice across multiple versions, deployed
across an array of PLCs becomes increasingly challenging.
Adjustments to interlock parameters, initialisation values,
configuration parameters, or hardware reconfiguration of
softdevices; all changes that are applied on the PLC project
layer, add to the complexity of maintaining these PLC pro-
jects by hand. It would be a fallacy to continue without an-
other means for the design, development and generation of
PLC projects that would achieve the results within a more
effective and efficient manner.

THE PLCMS
The PLCMS has been developed using Python 3 in ad-

dition to Object-Relational Mapping (ORM) to interface
with an SQL database backend. The PLCMS performs
multiple functions, aimed to expedite the PLC framework
and project generation processes in order to cope with the
number of ongoing changes and vast quantity of PLCs used
throughout the facility. Additionally, it provides the ability

† sylvia.huynh@xfel.eu

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-THAPP01

THAPP01
1532

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

to analyse and capture a snapshot of the framework library
across the different versions as they are developed. The
ability to perform integrity checks through data mapping is
taken advantage of by the Continuous Integration, Delivery
and Deployment (CI/CD) functionality offered by GitLab
[3].

The development and generation processes are illus-
trated in Fig. 1 and Fig. 2 respectively.

Figure 1: PLCMS Development Process.

Figure 2: PLCMS Generation Process.

PLC Framework
The framework is developed in Beckhoff’s TwinCAT 3

as a separate PLC project, and contains several classes or
Program Organization Units (POUs) which represent the
softdevices. The framework is compiled into a library file
which is then used within all the PLC projects. Composed
using Structured Text1, the framework library is designed
in such a way that the functionality of the softdevice is ab-
stracted from the linking of hardware Inputs and Outputs

(I/O). This accommodates flexibility in the physical imple-
mentation of the hardware. While the implementation of
each softdevice can vary wildly; from procedural to finite
state machines, the framework enforces a structural tem-
plate. This is broken down into major aspects: global prop-
erties and softdevice specific templates. Combined, they
aid both automation and data integrity of the subsequently
compiled framework library leading into the PLC project
itself.

Global Properties Facets of the framework library
which are shared across all softdevices are incorporated
into the global structure. This ensures that all softdevices
developed will reference the same set of data structures,
types or data sets. This includes:

• Access rights
• Units – prefixes and suffixes
• Error codes
• States
• Data types
• EtherCAT fieldbus terminals.
Softdevice Structure As the softdevices provide the

interface to the SCADA system for remote control, they too
adhere to a defined template. This ensures that they take on
the same form and are compiled with the same structure.
This includes:

• Softdevice functional commands
• Softdevice attributes
• Instantiation parameters as required
• Error code mapping
• Available set of hardware signals
• Compatible EtherCAT terminals for each defined I/O

signal
• Device inheritances

Database Models
The PLCMS database comprises a SQL database

backend, designed around the relational data model intro-
duced by Ted Codd [4]. PostgreSQL was selected for being
closer to the ANSI SQL standard compared to other open
source databases [5]. Nonetheless, any transactional SQL
database is both adequate and easily adaptable due to the
use of ORM.

The database has been designed around the format of the
framework library. After a new version is released, the
PLCMS takes a reference to the TwinCAT framework pro-
ject, parses the PLC code from the associated library into
manageable relational datasets, and inserts the information
into the PLCMS database. As such, the database is essen-
tially a data capture of the framework library.

In utilising a relational data model, it is possible to en-
sure data integrity and structural integrity of the softdevice
interfaces through data mapping. It also provides digestible
bite sized relationships between all the aspects that make
up a softdevice.

 Through consistent naming conventions, it becomes
clear which properties or components of a softdevice ref-
erence a global structure, data set or property.

 __

1 Structured Text is the preferred IEC61131-3 language used at EuXFEL.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-THAPP01

Device Control and Integrating Diverse Systems
THAPP01

1533

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

To aid the ongoing development of the framework li-
brary, the PLCMS database is made up of two schemas,
one for production and another for development and test-
ing.

Having all of this information stored within a database
opens up the possibility to perform comprehensive data
analysis on the framework library. This includes the auto-
matic generation of change logs between release versions,
generation of structural documentation, the ability to query
aspects of the data model to determine inconsistencies or
extract an array of data with a simple SQL query.

A simplified diagram of the PLCMS database can be
seen in Figure 3.

Figure 3: Simplified PLCMS database.

Continuous Integration, Delivery and Deploy-
ment

 In having a framework library that is constantly evolv-
ing, it is necessary to maintain some level of version con-
trol. To address these needs, GitLab is used, along with the
entire GitLab toolset.

As the framework is developed in Structured Text,
GitLab is able to treat the TwinCAT files as standard source
code. From here, with an appropriate “.yml” file, pipelines
are set up and configured. The pipelines are built to act be-
tween the development branch and pre-release and from
pre-release to release.

When a new version of the PLC framework project is
ready for release, the pipeline is triggered automatically to
take the PLC framework project and insert it into the
PLCMS development database.

Regression tests in the form of integration tests are also
completed within the pipeline and any failures at this stage
are addressed manually. Regression testing is conducted as
follows:

1. The PLC framework project is taken and compiled
into a TwinCAT “.library” file.

2. The library file is installed within a PLC project des-
ignated for regression testing.

3. The regression test system is made up of two PLCs:
One behaving as a standalone test PLC project utilis-
ing the framework library, and a mirror copy, acting
as a hardware simulator for feedback.

4. Tests are run on all the softdevices to check access
rights and that the defined attributes match up to the
expected responses

5. Integration test are run on specific softdevices to en-
sure functionality and softdevice behaviour is con-
sistent with the design requirements.

Independent of the regression testing within the pipeline,
it is also possible to develop tests outside of this for indi-
vidualised use during the developmental stages of a softde-
vice.

Upon the success of the regression tests, the pipeline be-
tween the pre-release and release comes into play.

Here the framework library:
• Is added to the PLCMS production database
• Documentation within the PLC framework library pro-

ject is extracted and used to generate the documenta-
tion for the framework library version

• Generated documentation is deployed onto an internal
ReadtheDocs [6].

• Is compiled as a TwinCAT “.library” file
• Is exported onto a server which is accessible to all the

PLC Projects used at the multiple beamlines and end-
stations.

• Release notes are generated for the deployed library
version

While further automation is certainly possible, the cur-
rent implementation is nonetheless a convenient way to go
from a TwinCAT project which contains the framework, to
a compiled library file, ready for integration into other PLC
projects.

Translating Wiring Diagrams
During the construction and design phase, the PLC allo-

cation and the wiring design for the hardware up to the PLC
has been defined using EPLAN.

Following collaboration between EPLAN and Beckhoff,
it is possible to store terminal details of both Beckhoff and
other EtherCAT based vendors within EPLAN. It is also
possible to export wiring diagrams into markup languages
– in this particular case, XML, - which can be better trans-
lated and handled by other programming languages. Simi-
lar to the file format required by Beckhoff’s XCAD Inter-
face.

This naturally leads the utilisation of EPLAN to map ter-
minals to a collection of signals belonging to softdevices
akin to that defined within the PLC Library. As a result, an
EPLAN export not only contains the hierarchy of the PLC,
its terminal configuration and EtherCAT addressing, but
also the signal names and instance names which make up
the collection of softdevices within the PLC.

In the same manner that the PLCMS is fed a TwinCAT
Library PLC Project and breaks it down into relational data
sets, it can inversely read an XML export defined as a hi-
erarchal tree, and build the same relational data set which,

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-THAPP01

THAPP01
1534

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

when married together with the framework library data, is
able to compile the building blocks of a PLC Project.

Automatically Generating PLC Projects in XML
Provided that the required PLCs are defined in EPLAN,

exports are generated and placed into a version control sys-
tem. From this location, the PLCMS is provided with the
EPLAN export and performs the following:

• Extracts the required framework version
• Builds the PLC I/O tree from the provided hardware

hierarchy
• Checks that the EtherCAT fieldbus hardware infor-

mation defined in EPLAN is consistent with the ap-
proved and supported list with the selected PLC library
version from the project data

• Gathers a list of softdevices which are to be instanti-
ated within the project

For every softdevice instance which is to be included in
the PLC project, the PLCMS will query the library data-
base to:

• Ensure the softdevice is supported
• Check that all signals in the softdevice have also been

defined within the EPLAN export with an exception
for optional signals

• Ensure that each signal is of the correct data type
• Ensure that each signal is connected to a compatible

and approved EtherCAT terminal
• Connect each defined softdevice signal to a corre-

sponding hardware I/O signal.
There are a few scenarios where the PLCMS will per-

form automatic overrides to the provided data when the re-
quirements have not been met. When this occurs, a warning
is added to the output log, likewise for any errors that are
encountered. Some of these scenarios are described below:

• For softdevices which are not approved or available
within the selected framework library version: the
PLCMS will break the collection of I/O of the softde-
vice into a set of simplified components such that the
project can still be generated.

• The PLCMS will highlight any discrepancies with sig-
nal addressing.

• Missing signals within a softdevice will be high-
lighted. E.g. If a valve requires two signals but only
one is declared.

• Broken links within the terminal hierarchy are high-
lighted

With the above steps completed, the PLCMS creates an-
other XML file which can be utilised to generate the Beck-
hoff TwinCAT project.

As all the aspects of the softdevice are available within
the PLCMS, several integrity checks are applied during the
creation of the PLC project XML. This catches a large
number of errors which may have arisen during the plan-
ning or wiring phases. It also ensures consistency through
the use of standardised softdevice templates across all of
the PLCs at the facility. The main benefit of the PLCMS
comes from all of the inherent checking and instantiation
of softdevices which is no longer a manual task.

While PostgreSQL may not necessarily be optimised for
connection and transactional times, creating a PLC project
XML of approximately 1300 signals, originating from 250
instances of softdevices would take around 30 s to com-
plete.

Beckhoff Automation Interface
Beckhoff provides an eXtended Automation Engineer-

ing interface (XAE) [7], which enables the creation of
TwinCAT PLC projects generated from several scripting
languages. In our case, a PLC Project Builder was devel-
oped in C# to interface with the XAE in order to create the
final TwinCAT PLC Project.

The PLC Project Builder consumes the PLC Project
XML file generated by the PLCMS, and uses this file to
build the TwinCAT project with the defined I/O, linking
and softdevice instances.

 There are several major benefits to this, which are all
capitalised heavily on within the creation of PLC projects
at EuXFEL. Whether a PLC contains a single instance of a
softdevice or 500, the total duration required to generate
the PLC project falls to under a minute. Not only does this
save a large amount of time, but with all the additional
checks to ensure compatibility, completeness and data in-
tegrity, the likelihood of errors is also significantly re-
duced.

Extended Features
Further to the instantiation, mapping and linking of

softdevices on a PLC, there are several other fundamental
aspects which are required in order to provide a functional
system. These include: interlocks, configuration and ini-
tialisation of parameters, and peer-to-peer communication.

During the generation of the PLC Project XML file, the
PLCMS will also locate and read in auxiliary files pertain-
ing to the extended features and incorporate them into the
final PLC Projects. Data integrity checks are also applied
to ensure correct data type usage, naming conventions and
existing referencing.

Interlocks Combined with the equipment protection
system, each of the beamlines and instruments have addi-
tional rules, relating to the photon beam properties and vac-
uum system integrity. These rules or conditions are defined
by a team of experts within a Microsoft Excel spreadsheet,
describing which properties from various softdevices or a
particular status will trigger a series of protective actions
once a defined threshold has been exceeded or met.

Configuration and Initialisation Parameters As a sin-
gle softdevice template can be used to accommodate sev-
eral different hardware models or vendors; configuration
and initialisation parameters will differ from instance to in-
stance.

These configurational, operational or initialisation prop-
erties are defined on an as-need basis for each softdevice
instance. As some of these properties are only determined
after commissioning, they are saved into a separate XML
file referred to as the Project Data input file, containing the
softdevice instance name, the property name and required
value.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-THAPP01

Device Control and Integrating Diverse Systems
THAPP01

1535

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Peer-to-Peer Communication Occasionally, a softde-
vice from one PLC will require information from another
PLC in order to function correctly. Whilst the infrastruc-
ture design attempts to reduce or prevent this situation from
occurring, the PLCMS requires a method to handle the oc-
casional peer-to-peer communication request. Note: Peer-
to-Peer communication requires a minimum of two PLC
cycles, resulting in a higher time cost which is undesirable.

Similarly to the configuration and initialisation parame-
ters, softdevices which require data from an external PLC
or vice versa are created as virtual softdevices and their de-
tails are defined within the project data. The PLCMS will
parse the virtual device and incorporate it into the PLC pro-
ject as required.

FUTURE DEVELOPMENTS
Whilst the PLCMS is a convenient tool to aid PLC pro-

ject generation through automation, there are still many as-
pects which can be improved or further enhanced, some of
which are currently in development but not yet in produc-
tion.

PLCMS Projects Database Expansion
Currently the PLCMS only stores static data related to

the Library version. Ideally, the database will also store
static information relating to each PLC in production –
from the names of all the softdevice instances, the Ether-
CAT addressing, the number of PLCs and which instanti-
ated softdevice can be found where.

After the PLCMS reads in the EPLAN export file, it can
have the option to save the data directly into the database
itself. This will readily enable the tracking of PLC Projects
as they evolve and provide a means for data analysis re-
garding the hardware assets which are connected to the
PLC without being dependant on any proprietary PLC soft-
ware. Additionally, the ability to identify where a softde-
vice type has been implemented will aid future roll out of
updated PLC Projects when the softdevice template has
been updated or evolved.

Web Interface
To increase usability, an improved Human Machine In-

terface (HMI) web interface can be designed as a front end
to the PLCMS. Currently, a series of scripts are run in order
to complete the PLC project generation tasks.

Additionally, the defining of interlocks could be relo-
cated to the web interface. The PLCMS should be able to
display a list of the available softdevices and their associ-
ated properties and functional commands. This will aid the
interlock definition design process greatly as it is not al-
ways clear which instantiated device originates from which
PLC, or what properties or functions are available.

Difficulty relating to versioning is also a major drawback
whenever Excel spreadsheets are concerned. By deprecat-
ing this step using a web interface, versioning can be han-
dled easily, along with change logs relating to historical
trigger conditions and actions.

Configuration Settings Integration
While there is currently a crude method to store config-

uration, initialisation and operational settings, it would be
much more elegant and convenient if the PLCMS was able
to store and read the settings directly from the database.

Having a set of default properties for each hardware
model or vender located within the database will also ena-
ble the PLCMS to extract and configure the correct settings
while the EPLAN export is being processed. Conversely, if
a property on an instantiated softdevice has been changed
after the PLC Project is active; the parameters will be lost
after a restart or power loss. Having this information stored
and accessible from the database would provide a means
for it to be automatically updated and readily extracted.

SCADA Integration
Furthermore, by integrating the existing SCADA system

with the PLCMS, changes to any important parameters,
functional or otherwise made via the SCADA system can
be written directly during runtime into the PLCMS, pre-
venting any critical data loss on update or outage.

Database Independence
Currently the PLCMS takes information from the PLC

Library project and stores it into the database. When gen-
erating the PLC Project XML, the PLCMS again queries
the database, several times, extracting information as re-
quired. This dependency results in an expected uptime re-
quirement for the PLCMS database and a reliance on a da-
tabase connection. If the database aspects of the PLCMS
were to be abstracted from the rest of the functionality, this
would lead to a more versatile solution where the PLCMS
holds the information of the entire library project in Ran-
dom Access Memory (RAM). This way, by having a local
copy of a PLC Library project and an EPLAN export, it
would be possible to generate the PLC Project XML with-
out the need for an active database connection.

The intent here is to provide an alternative way to gen-
erate a PLC project if required, rather than removing the
requirement for a database altogether.

SUMMARY
The PLCMS is a tool used to aid the automatic genera-

tion of PLC projects in an expedited fashion while reduc-
ing the potential for error. It is designed to be scalable and
in using ORMs and with Open Source tools in mind, main-
tains a level of flexibility and adaptability.

ACKNOWLEDGEMENTS
The PLC Team and authors of this paper worked closely

with other European XFEL scientific support groups and
acknowledge their continuous efforts, input and coopera-
tion. We thank the rest of the Electronic and Electrical En-
gineering (EEE) group, the Information Technology and
Data Management (ITDM) group and the Controls Soft-
ware and Data Analysis groups.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-THAPP01

THAPP01
1536

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

REFERENCES
[1] T. Tschentscher et al. “Photon Beam Transport and Scien-

tific Instruments at the European XFEL”, Applied Sciences,
vol. 7, no. 6, p. 592, Jun. 2017,

 doi:10.3390/app7060592

[2] S. Hauf et al., “The Karabo distributed control system”, J.
Synch. Radiat., vol. 26, no. 5, p. 1448-1461, Sep. 2019,
doi.org/10.1107/S160057751900669

[3] GIT,
 https://docs.gitlab.com/ee/ci/introduction

[4] R. Elmasri and S. B. Navathe, Fundamentals of Database
Systems 6th Ed. Boston, MA, USA: Addison-Wesley, 2011.

[5] PostgreSQL, https://www.postgresql.org/
 docs/current/features.html

[6] ReadTheDocs Open Source documentation tool,
https://readthedocs.org

[7] Beckhoff, https://infosys.beckhoff.com/
 english.php?content=../content/1033/tc3_auto-

mationinterface/index.html

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-THAPP01

Device Control and Integrating Diverse Systems
THAPP01

1537

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

