
 

SOFTWARE ARCHITECTURE FOR NEXT GENERATION 
BEAM POSITION MONITORS AT FERMILAB 

J. S. Diamond#, Fermilab, Batavia, USA 

Abstract 
The Fermilab Accelerator Division / Instrumentation 

Department develops Beam Position Monitor (BPM) sys-
tems in-house to support its sprawling accelerator com-
plex.  Two new BPM systems have been deployed over the 
last two years – one upgrade and one new.  These systems 
are based on a combination of VME and Gigabit Ethernet 
connected hardware and a common Linux-based embed-
ded software platform with modular components.  The ar-
chitecture of this software platform and the considerations 
for adapting to future machines or upgrade projects will be 
described. 

INTRODUCTION 
The Fermilab Booster is a synchrotron accelerator with 

a circumference of 474 meters which accepts 400 MeV 
protons from the Linac, accelerates to 8 GeV in less than 
67 milliseconds to be injected into the Recycler.  In 2018 
the Booster BPM data acquisition system was upgraded to 
a VME-based system based on in-house developed digi-
tizer and timing modules.  At the same time the design of a 
VME-based BPM system for Fermilab’s newest accelera-
tor, the Integrable Optics Test Accelerator (IOTA) was be-
ing developed.  The decision was made to re-use as much 
hardware, firmware and software as possible from the 
Booster BPM upgrade project. 

HARDWARE & FIRMWARE 
Both the Booster BPM upgrade project and the IOTA 

BPM project are based on VME 64x crates supplied by 
Weiner.  In the case of the Booster, six crates are utilized to 
instrument all the BPMs while IOTA uses only one.  Each 
crate contains a Single Board Computer (SBC), a Timing 
and signal distribution board and multiple digitizer mod-
ules.  The Booster BPM system uses an Artesyn MVME-
8100 SBC with a QorIQ processor and 2GB of system 
RAM.  The IOTA BPM system uses a Concurrent Technol-
ogies 405x SBC with an Intel Core Duo processor and 2GB 
of system RAM. 

The Timing module is based on a design originally de-
veloped for the Main Injector and Tevatron BPM systems.  
The timing module decodes the Fermilab site-wide ma-
chine clock, TCLK and synchronizes with the machine RF. 

Each digitizer module receives ADC clock and trigger 
signal from the timing module.  The raw signals from the 
BPM plates are passed through an analog transition module 
and connected to an ADC channel on the digitizer module.  

The digitizer modules run at 250 MSPS and filter the data 
through a down converter and into on-board RAM. 

In the Booster BPM the analog transition modules are 
present in the VME crate and use the VME bus for power.  
The data acquisition software can detect these modules and 
verify that they are present but otherwise does not interact 
with them.  In the IOTA BPM these modules are external 
to the VME crate and powered by their own NIM crate and 
have no interaction with the data acquisition software.  
Plans for a future BPM system are incorporating a Rasp-
berry Pi-based controller in the NIM crate for controlling 
attenuation and gain settings on the analog transition mod-
ules. 

EMBEDDED LINUX STACK 
Buildroot is an open source embedded Linux build sys-

tem that automates the construction of a cross-compile 
toolchain, Linux kernel and root filesystem.  Building a 
Linux kernel and root filesystem from scratch gives the de-
veloper control over the cross-compile toolchain, which 
support software is present and which kernel options are 
used.  Using Buildroot also allows us to achieve a system 
footprint of less than 30 MB. 

DEVICE DRIVERS 
Communication with hardware devices over the VME 

bus was achieved using the mainline VME driver intro-
duced into the Linux kernel in version 3.10.  This driver 
allows developers to interact with VME attached device 
from within a Linux kernel module (LKM) much like a PCI 
or USB device.  The mainline VME driver supports both 
the Universe II and TSI-148 VME bridge chips through a 
common API. 

Each in-house developed hardware device requires an 
LKM to be developed to facilitate communication between 
the data acquisition software and the device.  In the case of 
the timing modules this LKM only communicates with one 
device but the LKM for the digitizer and analog transition 
modules must support communication with multiple de-
vices.  Upon insertion into the kernel the LKM requests 
access to the VME bus by acquiring a resource from the 
kernel VME driver.  The VME resource is used to scan the 
VME bus and probe for hardware.  Once a hardware device 
is successfully probed it is registered with the Linux device 
model as a VME bus device.  If the LKM is removed, user 
space is notified, and the device is removed from the device 
model as a part of the LKM shutdown procedure. 

Access to hardware device registers is provided to user 
space using the Linux sysfs filesystem.  Each register on 
the hardware is made available as a sysfs attribute that 
can be read/written through the device’s entry in sysfs.  
This is a useful tool for developers to interact with and 

* This work was supported by the DOE contract No. DEAC02-
07CH11359 to the Fermi Research Alliance LLC. 
# jdiamond@fnal.gov 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA034

Control System Upgrades
MOPHA034

275

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



 

diagnose hardware directly from the command line using 
the familiar Linux tools such as ‘cat’ and ‘echo’.  Access 
to the digitizer’s memory buffers is provided through the 
traditional Linux character device interface. 

The timing modules and digitizer modules both deliver 
interrupts to the system to synchronize the data acquisition 
software with external events.  Because the data acquisi-
tion software runs in user space and the interrupt handlers 
exist in kernel space a mechanism for delivering interrupt 
notifications must be chosen.  Generic Netlink is a Linux 
kernel feature design for passing asynchronous messages 
to and from the kernel with an API similar to the sockets 
interface.  The user space application creates a socket and 
binds it to a named socket on the kernel side that will 
broadcast messages from the interrupt handler.  The appli-
cation that enters into a message handling loop and goes to 
sleep until a message arrives.  In addition to interrupts the 
LKM developed for each type of hardware device use Ge-
neric Netlink to notify user space when hardware is probed 
and when it is removed from the system. 

The development of LKMs for multiple hardware de-
vices with similar hardware and software interfaces re-
sulted in the production of a lot of boiler plate code.  To 
assist in the development of these LKMs and the C++ API 
to interface with them, a code generation tool named 
‘drvgen’ was developed.  The drvgen tool takes in a hard-
ware device interface specification in the form of a comma-
separated spreadsheet file.  The specification includes the 
register map, device memory region, interrupt handlers and 
command functions.  The code generated includes the 
LKM and a C++ library that wraps the sysfs, character de-
vice and Generic Netlink interfaces.  Modules with 
stubbed-out functions are generated on the first drvgen run 
for the developers to add custom code that won’t be over-
written by drvgen when the specification changes. 

To communicate with the hardware a user space applica-
tion asks the generated C++ library for a device object or a 
pool of device objects that represent the hardware detected 
on the VME bus.  The C++ library uses the sysfs, character 
device or Generic Netlink interfaces to communicate with 
the LKM and the LKM uses the kernel’s VME API to com-
municate with the hardware.  Stubs for interrupt handlers 
are provided in a separate module for developers to write 
interrupt handlers.  When a feature or register is removed 
from the specification a kernel message is written to warn 
the developer that a deprecated feature was used if the ap-
plication code continues to call it. 

Development is underway right now to expand the data 
throughput to the digitizer modules by utilizing their front 
panel Gigabit ethernet interface through a rack-mount 
ethernet switch.  Both the Booster BPM and IOTA BPM 
systems will be upgraded once these interfaces are estab-
lished. 

 
Figure 1: BPM Data Acquisition Software Process Model. 

DATA ACQUISITION SOFTWARE 
The Beam Position Monitor data acquisition software is 

responsible for arming the digitizer modules ahead of a 
measurement and collecting data for each measurement af-
ter the digitizer modules have acquired it.  Measurement 
data must be collected before the next machine cycle be-
gins so the digitizer modules can clear their buffers in an-
ticipation of the next measurement. 

The data acquisition software runs as a Linux daemon 
process (see Fig. 1) and is started as a part of the system 
boot process.  Threads are spawned to handle requests from 
external interfaces over a message queue, coordinate ma-
chine state through clock events decoded by the timing 
module and to collect data from the digitizer modules into 
a shared memory region.  The daemon process writes log 
messages to the Fermilab-developed TRACE facility to as-
sist with diagnostics. 

The daemon process reads its configuration from a hu-
man-readable text file and parses it with the libconfig li-
brary.  The configuration contains the BPM database, 
measurement profiles and machine state configuration and 
various other system level parameters.  The configuration 
data is then made available via a global configuration ob-
ject and published in the shared memory region to be read 
by clients.  The daemon process can be requested to reload 
the configuration at runtime via a request sent over the 
command message queue should changes be made by ex-
perts during operation. 

Each accelerator at Fermilab has its own state and is syn-
chronized with the rest of the complex using a clock system 
known as TCLK.  The timing module is responsible for de-
coding this clock signal and generating interrupts when 
machine events occur.  Taking these events and using them 
to coordinate the position measurements is the responsibil-
ity of a State Machine implementation.  A custom State 
Machine implementation was developed for both the 
Booster and IOTA BPM systems and is specified as a part 
of the data acquisition software’s configuration.  The State 
Machine implementation configures the timing module 
and responds to the events it generates by configuring the 
data acquisition system to make position measurements. 

The Data Acquisition system is responsible for manag-
ing the pool of digitizer modules.  The Data Acquisition 
system operates in 5 different states: Initialization, Ready, 
Armed, Triggered and Readout.  When the daemon process 
starts up the digitizer modules are initialized according to 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA034

MOPHA034
276

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Upgrades



 

the configuration file and the system transitions to the 
Ready state while awaiting direction from the State Ma-
chine implementation or the command line utility.  To pre-
pare for a measurement a message is sent to the daemon 
process to arm causing the Data Acquisition system to pre-
pare the digitizer modules and transition to the Armed 
state.  From the Armed state the Data Acquisition system 
can transition to Triggered when the digitizer modules are 
triggered or back to Ready if the measurement is aborted.  
Once in the Triggered state the data can be readout into the 
shared memory region, or it can be armed again.  If a 
readout is requested, then the system enters the Readout 
state while the data is transferred.  If the system is armed 
again without a readout the data is discarded. 

USER INTERFACES 
To interact with the data acquisition software an API li-

brary was developed that wraps the shared memory and 
message queue interfaces in C++ classes.  

A command line utility was developed to assist with di-
agnosing the data acquisition software from the console or 
over the secure shell.  All requests that can be processed by 
the data acquisition software can be sent by an expert using 
the command line utility.  In addition, configuration param-
eters and measurement data can be inspected from the con-
sole using the command line utility.  The output of the com-
mand line utility can be redirected to a file if the user would 
like to dump data for offline analysis. 

The control system interface to the beam position moni-
tors is different for each machine and as such it was appro-
priate to develop separate interfaces for the Booster and 
IOTA or future BPM systems.  The control system software 
framework is called Acsys/FE and runs as a separate pro-
cess and like the command line utility, uses the library API 
to read measurement data out of the shared memory region 
and send requests over the message queue.  Future acceler-
ators at Fermilab may use EPICS as the control system and 
this model will allow us to develop an EPICS interface in 
place of the Acsys/FE framework. 

CONCLUSION 
The development of an embedded-Linux based beam 

position monitor system represents a two-year effort by 
software developers and electrical engineers in the Accel-
erator Division, Instrumentation department.  The system 
that has evolved is flexible enough to be deployed in two 
different accelerators, the Fermilab Booster and IOTA.  
Plans for a future BPM system at the PIP-2 Integrated Test 
stand are already in development for 2020 and include a 
shift from the legacy VME bus to ethernet-attached hard-
ware. 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA034

Control System Upgrades
MOPHA034

277

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


