
BUILDING AND PACKAGING EPICS MODULES WITH CONDA
B. Bertrand∗, A. Harrisson, ESS, Lund, Sweden

Abstract
Conda is an open source package, dependency and envi-

ronment management system. It runs on Windows, macOS
and Linux and can package and distribute software for any
language (Python, R, Ruby, C/C++. . . ). It allows one to
build a software in a clean and repeatable way. EPICS is
made of many different modules that need to be compiled
together. Conda makes it easy to define and track depen-
dencies between EPICS base and the different modules (and
their versions). Anaconda’s new compilers allow conda to
build binaries that can run on any modern linux distribution
(x86_64). Not relying on any specific OS packages removes
issues that can arise when upgrading the OS. At ESS, conda
packages are built using gitlab-ci and pushed to a local chan-
nel on our Artifactory server. Using conda makes it easy
for the users to install the EPICS modules they want, where
they want (locally on a machine, in a docker container for
testing. . . ). All dependencies and requirements are handled
by conda. Conda environments make it possible to work on
different versions on the same machine without any conflict.

INTRODUCTION
Distributing binaries of C/C++ programs is still not an

easy task today. Compiling locally and making modules
available via an NFS share is a common solution in the
EPICS community. Operating system package managers
like yum or apt are not new of course but they require one
to build different packages for each Linux distribution. In
recent years, language specific package managers became
more and more popular. There is no new programming
language without its own package manager. All modern
languages have their own: Python (pip), JavaScript (npm),
Rust (cargo)... It’s even coming to C/C++ with Conan [1]
for example. Conda [2] is another popular solution that is
not linked to a specific OS or language. Conda makes it
possible to build, distribute and install binary packages with
all their dependencies allowing users to concentrate on their
task and be more productive.

EPICS AT ESS
e3

The EPICS Environment at ESS named e3 [3] is based
on the concept developed by Dirk Zimoch at PSI that allows
dynamically loading of EPICS module resources. All the
IOCs use the same executable from EPICS base (softIoc)
that is not linked with any libraries. Shared libraries and
resources are all loaded at runtime by the require [4] module
that also performs dependency resolution. An IOC is started
by running the iocsh.bash script and a startup command

∗ benjamin.bertrand@esss.se

script that describes the modules to load. The iocsh.bash
script is a wrapper that starts a softIoc. For require to load the
required modules, they have to be in a defined file structure
as depicted in Fig. 1.

Figure 1: e3 tree structure.

The current e3 implementation includes some scripts mak-
ing it easy for developers to build locally the modules they
want and has proven to work very well for development.

Development vs Production
With an NFS share for production use, some extra com-

plexity appear compared to local development:

• keeping multiple versions of modules

• OS compatibility

For production use, the tree structure must allow adding
new versions of modules while keeping the existing ones.
This is easy for modules that nothing depend on, but be-
comes quickly very difficult to manage when rebuilding
dependencies is required. When a new module version is
added, all modules that depend on it have to be recompiled
to use this new release (due to ABI compatibility). But their
own version might not have changed. The notion of build
number is thus needed to have different builds of a same
version. This is exactly one of the problem that package
managers are designed to handle.

Another issue is that the modules can only be used on
the OS they were built on. Having modules built for differ-
ent Linux distributions, in the same tree structure, requires
one to modify the EPICS_HOST_ARCH, changing it from
linux-x86_64 to something specific to the distribution, and
compiling each module on different OS. This is not only
true between Linux distribution like Debian and CentOS but
even between major versions of a distribution like CentOS 7
and CentOS 8. As we’ll see, this is also something conda
can solve.

CONDA
Conda is an open-source, cross-platform, binary package

manager first released in 2012. It comes from the Python

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA014

Software Technology Evolution
MOPHA014

223

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



community and was created to help data scientist to install
libraries with C/C++ dependencies. As such it is general
and language-agnostic. Conda is already used in the EPICS
community for pvaPy [5]. PSI [6] also has some conda
recipes for epics-base.

Conda Concepts
A conda package is a compressed tarball file (.tar.bz2) or

.conda file that contains a collection of files to be installed
and some metadata (under the info directory). The files to
install can be system-level libraries, text files or binaries.
The package filename includes the package name, version,
and build string joined together by hyphen as shown in Fig. 2.

Figure 2: Package naming convention.

The build string h03bb814_0 includes a hash based on
the package dependencies (h03bb814) and the build number
defined in the recipe (0).

Not all packages include a hash in the build string. A hash
is only added if the recipe has an explicit dependency in
the build, host, or run sections that has a matching entry in
conda_build_config.yaml which is a pin to a specific version.
For the calc package mentioned above, the hash is based on
the dependencies described in Fig. 3.

Figure 3: calc package hash input.

The build string is an important information as it makes
it possible to rebuild the same version of a module with
different dependencies.

A conda channel is a repository of conda packages.
Conda packages are downloaded from remote channels,
which are URLs to directories containing conda pack-
ages. By default conda will download packages from
https://repo.anaconda.com/pkgs/. Many other channels are
available. conda-forge [7] is a popular community-led chan-
nel with more than 7000 packages. Hosting a conda channel
only requires a webserver to serve the packages (following a
defined directory structure) and index file (repodata.json).
Private channels can be created on anaconda.org or on a

private server. JFrog Artifactory [8] is a universal repository
manager that supports conda channels out of the box.

A conda environment is a directory that contains a spe-
cific collection of conda packages. A conda environment
is a virtual environment that is completely isolated from
other environments. Each environment includes the sub-
directories /bin, /etc, /include, /lib, /share, mimicking the
Linux Filesystem Hierarchy as shown in Fig. 4.

Figure 4: Conda environment structure.

Conda won’t modify system dependencies. An environ-
ment can be installed anywhere and doesn’t require superuser
privileges. As conda packages can be installed anywhere,
binaries and libraries shall be relocatable. This is done
using RPATH, the run-time search path hard-coded in an
executable file or library. The RPATH is set to a long place-
holder prefix during the package creation. At install time this
prefix is replaced with the path of the conda environment.

Conda tracks and manages the dependencies between ev-
ery installed package in an environment. An environment
can only include one version of a package. Installing a new
version will remove the previous one and update any required
dependencies. To work on different versions of a package,
you have to create different environments.

To use an environment, it should be activated by running
the conda activate <env> command. Activating an envi-
ronment puts the environment bin directory in the PATH
so that installed binaries can be found. The activation can
perform other actions, like exporting variables, depending
on the packages installed. The conda deactivate command
puts back the shell in its previous state.

CONDA-BUILD
Building a conda package requires a recipe. A conda

recipe is a directory that contains at least a meta.yaml file
describing the package. Only the name and version are
mandatory fields. But a useful recipe usually includes the
source (this can be an url, a git repository), build number,
build and run requirements and some commands to test the
built package. The command to build the package can be
included in the meta.yaml format (using the script field). But
by default conda expects a build.sh (on Linux and OSX) or
build.bat (on Windows) script.

To create a package, the conda-build command:

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA014

MOPHA014
224

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



1. Reads the recipe metadata

2. Downloads the source into a cache.

3. Extracts the source into the source directory.

4. Applies any patches.

5. Re-evaluates the metadata, if source is necessary to fill
any metadata values.

6. Creates a build environment and then installs the build
dependencies there.

7. Runs the build script. The current working directory
is the source directory with environment variables set.
The build script installs into the build environment.

8. Performs some necessary post-processing steps, such
as shebang and rpath.

9. Creates a conda package containing all the files in the
build environment that are new from step 5, along with
the necessary conda package metadata.

10. Tests the new conda package if the recipe includes
tests by creating a test environment with the newly
created package and its dependencies and running the
test scripts.

Build Variants
The nature of binary compatibility (and incompatibility)

means that we sometimes need to build binary packages
(and any package containing binaries) with several variants
to support different usage environments. This is the case
for EPICS modules. The version of a module used at run-
time must be identical to the version that was used at build
time. Strictly speaking, it should be a version that is ABI
compatible. In EPICS world, very few modules respect the
semantic versioning, meaning that using the same version
(major.minor.patch) is often needed.

The runtime requirement to use can be specified with the
run_exports key as shown in Fig. 5.

Figure 5: Recipe run_exports.

With the pin_subpackage function, pinning values can
be decoupled from recipes. The above specifies that if a
package lists calc has a host dependency, the version used at
build time will automatically be added as a dependency at
runtime. If the calc version 3.7.1 is used at build time, the
pining expression at runtime would evaluate to >= 3.7.1, <
3.7.2a0. While if using max_pin=’x.x’, it would evaluate to
>= 3.7.1, < 3.8.0a0.

The version of the dependencies doesn’t have to be in-
cluded in the recipe. Those can be defined in a separate
conda_build_config.yaml file, which can be global or local.

Using a global file has two benefits. It enables you to sep-
arate the version of the requirements from the recipe (you
don’t have to update the recipe itself to create a new build)
and it keeps the versions of all dependencies centralized
ensuring all packages use compatible versions.

Portable Binaries
Making C/C++ binary packages that can run on many

Linux distribution is tricky [9]. The binary depends on the
libstdc++.so and libgcc_s.so libraries. If you compile on
a recent Linux distribution, the libstdc++.so library your
binary was linked against might contain symbols that are not
present on an older distribution. To ensure compatibility, one
approach is to compile on the oldest Linux distribution you
want to support. Anaconda used to compile with CentOS 5
and conda-forge with CentOS 6. One disadvantage is that
you are usually forced to use the old compiler that comes
with the distribution.

At the end of 2017, Anaconda switched to their own com-
pilers. This comes with a lot of benefits: new and thus
improved compiler capabilities, including better security
and performance. It also means that you don’t have to rely
on an old Linux distribution to build compatible binaries.
The compilers come with their own libstdcxx-ng and libgcc-
ng libraries. conda-forge started the migration to the new
compilers at the end of 2018 and successfully completed it
in January 2019.

Using conda and anaconda compilers, binaries that run
on any Linux distribution can be built without much effort.
This requires of course that all the dependencies are built
with conda, but we can rely on that for the large number of
packages available on conda-forge (readline, ncurses, perl,
boost...). This makes the goal to compile once and run
anywhere a reality.

EPICS AND CONDA
Conda has many features that fit very well with the EPICS

use at ESS. By using conda, dependency management can
be left to the package manager and performed at install time
instead of runtime (by require). Dependency management
is a hard problem. It can in fact be expressed as a SAT
problem [10] (Boolean satisfiability problem) which is NP-
complete. In a conda environment, only one version of a
package can exist. Require doesn’t have to select the proper
versions of the modules compatible.

This is really similar to what is done in dynamic languages
like Python. Python modules are installed by a package
manager (like pip or conda) in a virtual environment and the
Python program loads the required modules at runtime but
it doesn’t handle the version to load. Only one version is
expected to be present in the environment. The exact version
of the Python modules needed are defined in a separate file
(usually requirements.txt when using pip).

A conda environment can be described in an environ-
ment.yml file, which is the equivalent of pip requirements.txt.
The versions of the modules to use don’t have to be in the

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA014

Software Technology Evolution
MOPHA014

225

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



startup command script anymore. By doing so we separate
the requirements from the program, following configuration
management best practices.

Putting everything we saw together, we can create recipes
for EPICS modules. They all depend on epics-base and re-
quire and are quite similar. A new recipe can be created using
a cookiecutter [11] template. The cookiecutter command in
Fig. 6 will create the files shown in Fig. 7.

Figure 6: Recipe creation.

Figure 7: Recipe template.

The build.sh script, shown in Fig. 8, is identical for all
EPICS recipes.

Figure 8: common build.sh script.

Figure 9 shows a typical example of an EPICS module
meta.yaml file (calc).

The source section refers to an archive of the module.
The local src directory can be used to add extra files, like a
specific Makefile needed to use require. In the build section,
run_exports is used to impose the runtime dependency of
packages using this module.

In the requirements, the build tools (compilers) and host
requirements are listed.

The test section uses the run-iocsh [12] tool to test the
compiled module. run-iocsh is a small Python script that
was developed for testing purpose. The iocsh.bash script to

Figure 9: calc meta.yaml recipe.

run an IOC starts an interactive IOC shell meant to run in the
foreground. run-iocsh runs iocsh.bash using subprocess and
sends the exit command after a delay. It raises an exception
if an error occurred. This command makes it easy to perform
a basic test on any new compiled modules. It ensures that
the module and its dependencies can be loaded by require.

CONDA-BOT
At ESS, we have an internal GitLab [13] server to store our

code. GitLab includes built-in CI/CD tools to easily apply
continuous software development. Each recipe includes a
.gitlab-ci.yml file that points to the same template shown in
Fig. 10.

This .gitlab-ci.yml file builds and uploads the recipe to
Artifactory on every push to the master or "release-xxx"
branches.

Using GitLab webhooks events, we can automate even
more the workflow to re-build recipes. Indeed when a new
version of a recipe is built, the recipes depending on that
package should also be rebuilt to ensure binary compatibility
between the different packages.

conda-bot [14] is a GitLab bot that was designed for this
purpose. It listens to webhooks events and triggers several
actions:

• create a merge request to update the recipe when a tag
is pushed to a repository from the epics-modules group.

• update the global conda_build_config.yaml file to pin
packages to the latest version published to Artifactory.

• trigger the build of dependent recipes

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA014

MOPHA014
226

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



Figure 10: Template .gitlab-ci.yml

conda-bot is based on gidgetlab [15], a Python framework
to interact with GitLab API and to write GitLab bots: appli-
cations that run automation on GitLab, using GitLab Web-
Hooks and API. Using webhooks, it can monitor changes on
a group of repositories. When pushing a tag to one EPICS
repository, the bot can automatically create a merge request
on the linked recipe to bump the version number. If the build
of the package is successful (this includes the tests part of
the recipe), the merge request is automatically accepted. The
package is built again (on the master branch) and uploaded
to the conda repository. In case of failure, the recipe needs
some manual modifications and an e-mail is sent to the user
who pushed the tag on the original repository.

Once package "A" has been released, its version in the
global conda_build_config.yaml is updated. This is also
done automatically by the conda-bot. Once done, the build
of the reverse direct dependencies is triggered. Those reverse
dependencies are computed by parsing the repodata.json file,
which is the index of the conda channel. The recipe of
those packages don’t have to be updated. The version of the
requirements is not pinned inside the recipe but taken from
the conda_build_config.yaml. Triggering a build will create
a new package (with a new hash in the build string) based
on the new released version.

CONCLUSION
Using conda for building and deploying EPICS modules is

an alternative solution to using an NFS share. It brings a lot
of benefits that come with a package manager. Conda makes

is easy to manage dependencies and build different variants
of a package. It separates the dependencies from the runtime
(require). The anaconda’s compilers make it possible to
benefit from a recent version of gcc and to build portable
(cross-distribution) Linux binaries. Being able to install
binaries locally is a great gain for the developers. It makes
all the phases of a project more effective: development,
testing and deployment. This is still a proof of concept and
hasn’t been used to deploy IOCs in production. But conda
is already used to deploy epics-base as well as applications
like the Channel Access and pvAccess gateways.

ACKNOWLEDGEMENTS
This work wouldn’t be possible without all the tools and

infrastructure provided by the conda and conda-forge com-
munity. I’d also like to thank Dirk Zimoch for his work on
require and Jeong Han Lee for his work on e3.

REFERENCES
[1] Conan, https://conan.io

[2] Conda, https://conda.io

[3] ESS e3, https://github.com/icshwi

[4] PSI require,
https://github.com/paulscherrerinstitute/
require

[5] pvaPy, https://github.com/epics-base/pvaPy

[6] PSI conda recipes,
https://github.com/paulscherrerinstitute/
conda-recipes

[7] conda-forge, https://conda-forge.org

[8] JFrog Artifactory, https://jfrog.com/artifactory

[9] Break the Chains of Version Dependency, http://www.
crankuptheamps.com/blog/posts/2014/03/04/
Break-The-Chains-of-Version-Dependency

[10] SAT problem, https://en.wikipedia.org/wiki/
Boolean_satisfiability_problem

[11] cookiecutter, https://cookiecutter.readthedocs.io

[12] run-iocsh,
https://gitlab.esss.lu.se/ics-infrastructure/
run-iocsh

[13] GitLab, https://about.gitlab.com

[14] conda-bot,
https://gitlab.esss.lu.se/ics-infrastructure/
conda-bot

[15] gidgetlab, https://gidgetlab.readthedocs.io

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA014

Software Technology Evolution
MOPHA014

227

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


