
INTEGRATING MOBILE DEVICES INTO CNAO’S CONTROL SYSTEM,
A WEB SERVICE APPROACH TO DEVICE COMMUNICATION*

C. Afonso1, C. Larizza, University of Pavia, Pavia, Italy
S. Foglio, S. Gioia, M. Necchi, Centro Nazionale di Adroterapia Oncologica, Pavia, Italy

S. Toncelli, Consultant on behalf of Centro Nazionale di Adroterapia Oncologica, Novara, Italy
L. Casalegno, Consultant on behalf of Centro Nazionale di Adroterapia Oncologica, Como, Italy

1 also at Centro Nazionale di Adroterapia Oncologica, Pavia, Italy

Abstract
The Italian National Hadrontherapy Center (CNAO) is

a cancer treatment facility that employs a synchrotron to
accelerate charged particle beams.

The configuration and support environment of CNAO’s
control system is responsible for managing the repository,
configuring the control system, as well as performing
non-real time support operations. Applications in this
environment interface with the relational repository, re-
mote file systems, as well as lower level control system
components. As part of the technological upgrade of the
configuration and support environment, CNAO plans to
integrate mobile applications into the control system.

In order to lay the groundwork for the new generation
of applications, new communication interfaces had to be
designed. To achieve this, a web services approach was
taken, with the objective of standardizing access to these
resources. In this paper we describe in detail the update of
the communication channels. Additionally, the solutions
to challenges encountered, such as access management,
logging, and interoperability, are presented.

CURRENT CONFIGURATION AND
SUPPORT ENVIRONMENT

The current physical architecture of the control system
is presented in Figure 1. This figure displays the physical
levels of the control system, specifying the hardware
equipment and role of each level [1]. Additionally, the
diagram presents the data transfer periodicity of the
communications between components.

The first layer contains the several types of applica-
tions. The largest component present in this level is the
collection of WinCC SCADA (Supervisory Control and
Data Acquisition) [2] applications. Also present are Virtu-
al Instruments, written in LabVIEW, which provide a
graphical interface used by operators to manage subsys-
tems that are currently not integrated into the SCADA.
Additionally, the first layer also contains the configura-
tion and support applications with a graphical user inter-
face.

In the second layer, the WinCC SCADA system appli-
cations are responsible for obtaining data and alarms from

the third layer, as well as delivering these to the first lev-
el’s SCADA terminals. Operational data from the acceler-
ator is archived at this level in a SCADA database. This
layer is also where the repository and repository services
reside. The repository is an Oracle DB cluster containing
data for running the facility. This data includes the physi-
cal characteristics of the accelerator, configuration set-
tings for software applications, accelerator settings for all
currently available charged beams, and information to
link patient identifiers to their scheduled treatments.

The third layer is responsible for performing data trans-
fer between the second and forth layers through the OPC
and OPC-UA protocol. Finally, the fourth layer, the clos-
est to the accelerator equipment, possesses the strictest
real-time requirements, and contains hardware and soft-
ware to manage each subsystem.

Figure 1: CNAO’s Control system, adapted from [1].

The Data transfer frequency between the fourth and
third layer is synchronized with events generated by the
Timing System. Namely, once per acceleration cycle, the
data in the fourth layer is refreshed, and can safely be
read during the time period between the two synchroniza-
tion events. From the third layer upwards, the periodicity

* This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 675265.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA003

MOPHA003
192

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

of data access depends on the type of application. Data
access to the SCADA supervisor possesses real-time
constraints and occurs once per cycle. Offline applica-
tions and repository services typically access the third
layer through OPC-UA without real-time constraints.

The configuration and support environment is a set of
C# applications in the first and second layer of the control
system, represented in Figure 1 as the “Offline Applica-
tions” and “Repository Services”. This environment’s
applications manage the repository and perform support
roles in the facility. There are currently over 60 applica-
tions in the configuration and support environment. Pre-
viously, these applications could only target desktop
workstations.

UPGRADE OF THE CONFIGURATION
AND SUPPORT ENVIRONMENT

The project presented in this document is the techno-
logical upgrade of the configuration and support envi-
ronment. The objectives of the upgrade technological
upgrade were the following:

• Allowing mobile devices to be used in the control
system. In order to achieve this, applications of the
upgraded environment should target multiple plat-
forms, namely Windows 10 and Android.

• Performing technological upgrade of the environ-
ment. The legacy configuration and support environ-
ment was designed in 2003. This project aims at inte-
grating newer development frameworks and libraries
into the environment.

• Services designed for these applications should be
developed in a multi-platform solution and provide an
open interface, consequently allowing them to be re-
used in applications that target all devices expected in
the upgraded environment.

• Aiding the medical certification process through the
improvement of the testability and maintainability in
applications of the upgraded environment.

In order to fulfil the project’s objectives, the technolog-
ical upgrade has been performed via the following steps:

• Selection of Technologies and libraries to be used in
the new applications.

• Design of a product line architecture [3] to be fol-
lowed by the new applications. The product line ar-
chitecture defines the general architecture of future
applications, as well as variation points to be filled by
developers.

• Design and development of services and tools for
supporting the future applications.

Development Environment
The Xamarin [4] development framework was chosen

for the applications and libraries of the upgraded control
system environment. By developing applications using
Xamarin with the .Net Standard code sharing method,
developers define shared library projects that can only
contain multi-platform logic [5]. These libraries can then

be used by single-platform projects, in C#, that in this
project will target the Windows and Android platforms.

Using this sharing method, the .Net Standard library
can contain all code that implements non-platform specif-
ic logic, including the user interface. Figure 2 contains a
diagram illustrating the dependencies between executable
projects and libraries in the development of multi-
platform applications for the upgraded environment.
However, in the case that these applications are only re-
quired to target one of the platforms, only one executable
project will be created in the solution.

Figure 2: Dependencies between libraries and executable
projects in the upgraded configuration and support envi-
ronment.

Application Architecture
In order to assist control system developers to create

applications for the upgraded environment, a product line
architecture was designed. This product line architecture
defines the general structure of applications in the up-
graded environment, as well as several variation points. In
these variation points, developers can define their own
components to be used, according the application’s spe-
cific requirements. Figure 3 presents a class diagram of
the designed product line architecture, illustrating the
classes used by these applications, and the relationship
between each software layer.

As defined in this product line architecture, the separa-
tion between the presentation and the domain layers is
ensured by the usage of the MVVM software pattern [6].
Also, the architecture dictates the usage of the dependen-
cy injection pattern [7] for the initialization of services
and dependencies. Additionally, a framework library is
provided to developers, containing classes for initializing

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA003

Software Technology Evolution
MOPHA003

193

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

the application, as well as base classes for several of the
software patterns dictated by the product line architecture.

Figure 3: Diagram of the product line architecture for the
configuration and support environment applications.

Finally, standard service client library classes are also
present in the diagram. These classes are available to
product line applications and implement domain and data
layer operations. In the next section we describe the web
services and client libraries developed during this project.

DEVELOPMENT OF THE STANDARD
SERVICES

The standard services were developed to facilitate the
communication between the future applications of the
configuration and support environment and the resources
they depend on. They are composed of several servers
and client libraries.

In the legacy environment, the communication between
applications and resources was performed through client
libraries, sometimes aided by tools present in the desktop
workstations they resided in. Because these tools are
unavailable to applications running on mobile devices, the
standard services had to be developed using a different
approach. The following standard service libraries and
servers have been implemented as part of this project:

• RDAS (Relational Data Access Service): Web ser-
vice that exposes a RESTful API for accessing the
repository, as well as a client library that performs
object-relational mapping and interfaces with RDAS
server instances.

• FDAS (File Data Access Service): This service is
composed of a web service that exposes a RESTful
API to allow applications to access a set of files in the
server. Additionally, a client library has been devel-
oped to interface with the server.

• CNAO Identity Provider: An OpenID Connect [8]
Identity Provider that performs authentication of us-

ers and clients. A client library designed to interface
with the identity provider and manage the tokens ob-
tained.

• OPCUASiprod: Standard service library designed to
perform communication with OPC-UA servers in the
third layer.

• CnaoLog: Standard service library designed to per-
form local and remote logging. Remote logging can
currently be performed into RDAS and FDAS server
instances.

In this section, we describe the most important design
decisions in the development of these standard services.
In addition, their expected impact on the software envi-
ronment is presented.

RDAS
The RDAS is composed of a server and a client library.

The server interfaces with the repository and exposes a
RESTful API that is accessible to authorized clients. The
RDAS client library was designed for two main purposes:
implementing the communication with the server and
allowing the repository database data to be manipulated in
an object-oriented manner.

The RDAS library defines a single interface for access-
ing the repository, alongside two concrete implementa-
tions. The remote implementation requests data from the
RDAS server, while the local implementation communi-
cates directly with the repository databases, as shown in
Figure 4. The remote implementation does not require the
Oracle client application to be installed in the device, and
therefore can be used in all the environment’s devices.
Meanwhile, the local implementation was developed for
porting legacy applications with requirements that would
not allow them to use the remote interface.

Figure 4: Local and remote access to the repository
through the RDAS.

In order to fulfil the second purpose, the library imple-
ments several ORM features, allowing CRUD operations
in tables to be performed without the developer handling
SQL code. The developer can define classes to represent
database views, tables, or queries. Afterwards, the devel-
oper can perform queries using these classes, and addi-

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA003

MOPHA003
194

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

tionally, if the class represents a table, also perform insert,
update, and delete operations.

FDAS
Configuration and support environment applications are

occasionally required to access files in other control sys-
tem devices. In the legacy environment, applications were
installed on machines with access to remote network
drives or FTP access, which is unavailable on mobile.

The FDAS service was developed with the purpose of
exposing files contained in the server to environment’s
applications via a RESTful API. In order to allow devel-
opers to define which folders are to be exposed, a virtual
file system abstraction was defined. The abstraction al-
lows configuration of which folders will be exposed by
the FDAS server instance, and how to present them to
clients. Additionally, a client library was developed to
communicate with the server instances on behalf of cli-
ents.

Figure 5 contains a domain model, illustrating the rela-
tionships between FDAS servers, the client libraries, and
the identity provider.

Figure 5: FDAS domain model.

Authorization and Authentication Service
As a part of the effort to standardize the access to re-

sources of the control system, several security require-
ments were analysed. In legacy environment’s applica-
tions, authentication was performed by clients via the
LDAP protocol [9], and mobile devices integrated into the
upgraded environment are not able to access this service.
Additionally, in the legacy solution, client applications
performed the authorization of users, and it was desirable
for resources to also confirm the authentication process.
Consequently, we chose the OpenID Connect [8] standard
for authentication and authorization in the upgraded envi-
ronment.

The OpenID Connect standard defines an identity pro-
vider entity, to which protected resources delegate their
authentication and authorization capabilities.

The identity provider was developed using the Iden-
tityServer4 framework [10], which supplies a base im-
plementation of the standard, as well as several extension
points to tailor the identity provider. The following exten-
sion points were developed and integrated:

• All configuration data for running the identity pro-
vider was persisted in the repository database, and
several management classes were defined to obtain
this data. This data includes client data, API and iden-
tity resources information. In total, 18 new tables
were added to the repository’s database schema.

• A custom profile service, which obtains and provides
claims about the user [11]. Since IdentityServer4
does not define how user data should be structured,
when using a custom user repository, developers also
have to implement and override all services that con-
sume user data.

Protected resources, such as the RDAS and FDAS
server instances were configured to delegate access con-
trol to the identity provider. In the resulting access token
from an authorization request, the developed profile ser-
vice includes a permission mask, which denotes the per-
missions of the respective end-user. The usage of permis-
sion masks was ported completely from the legacy envi-
ronment, and the identity provider obtains them from the
repository. By using the permission mask scheme, user
permissions from the legacy environment were carried
over throughout environment’s upgrade.

Finally, a client library was developed to communicate
with the identity provider and manage the obtained to-
kens. This library is also used by other service client li-
braries to access their respective resources.

Integrated Logging
Event logging in the upgraded environment is per-

formed via a base logging library and a set of optional
endpoint libraries, which were developed during this
project. The base library defines a façade logging inter-
face, which is implemented by an optional library using
the Serilog logging framework [12].

The Serilog framework defines the concept of sinks.
Sinks are configured during the application initialization,
and later, whenever an event is sent for logging, each sink
receives the event and processes it as it sees fit. Two op-
tional libraries implement sinks that log events received
into RDAS and FDAS server instances.

Both RDAS and FDAS services can be configured to
also act as a centralized logging endpoint. RDAS server
instances configured this way log events received into
pre-defined tables. Meanwhile, FDAS instances can be
configured with a folder path to store the organized logs.

OPC-UA Access
As mentioned previously, applications of the configura-

tion and support environment may communicate with
OPC enabled servers in the third layer. During the envi-

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA003

Software Technology Evolution
MOPHA003

195

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

ronment upgrade, no major design changes were required
for the OPC client library. Therefore, the legacy OPC
interfacing library was ported for the upgraded environ-
ment.

INTEGRATION INTO THE
ENVIRONMENT

Currently, several applications are being developed for
the upgraded environment, following the product line
architecture, and using the standard services.

In the same period, developers of software applications
in other environment expressed willingness to utilize
some services developed for the configuration and sup-
port environment. As a result, a project was approved, and
is currently underway, to allow LabVIEW applications
present in the first level of the control system to consume
the web services of the upgraded environment [13].

Impact on the Environment
The expected date for the integration of the first up-

graded environment applications into the control system
is the beginning of 2020. As a result, evaluating the up-
graded environment, in comparison to the former, can
only be performed at this moment based on the impact of
the newly developed tools, and the expected quality at-
tributes of applications.

The main improvement to the control system has been
the addition of the mobile devices as application plat-
forms. In addition, we argue that, overall, the designed
product line architecture better promotes maintainability
and testability than the legacy design. This has been done
by segregating the implementation of the services from
the applications themselves and enforcing several loose
coupling strategies in the product line architecture.

Finally, resource access control has been improved
through the adoption of an authentication and authoriza-
tion standard that is widely adopted in the industry, allow-
ing us to consider the possibility of making a set of the
web services externally available in the future.

CONCLUSION
During the past years, the configuration and support

environment of CNAO’s control system is being upgrad-
ed. In this document, we have presented the service ori-
ented approach for designing the communication between
future applications in this environment to other control
system components.

As a result, several web services and client libraries
were designed and developed. These services, alongside
the technologies chosen in the product line architecture,
extend range of devices able to operate in the facility’s
control system, adding mobile devices.

The preliminary results of this project have been posi-
tive, with the first environment applications being devel-
oped currently. Additionally, a project to allow the ser-
vices to be consumed by applications in other environ-
ments is currently underway, expanding their usage.

REFERENCES
[1]

[2]

L.Casalegno, M.Pezzetta and S.Toncelli, CNAO General
Control System Organization Document, unpublished.
SCADA System SIMATIC WinCC V7,
https://w3.siemens.com/mcms/human-machine-
interface/en/visualization-
software/scada/pages/default.aspx

[3] L. Bass, P. Clements and R. Kazman, Software architec-
ture in practice, Addison-Wesley Professional, 2003.

[4] Xamarin | Open-source mobile app platform for .NET,
https://dotnet.microsoft.com/apps/xamarin

[5] Introduction to Portable Class Libraries (PCL),
https://docs.microsoft.com/en-
us/xamarin/cross-platform/app-fundamentals/
pcl?tabs=windows

[6] The Model-View-ViewModel Pattern – Xamarin,
https://docs.microsoft.com/en-
us/xamarin/xamarin-forms/enterprise-
application-patterns/mvvm

[7] M.Seemann, Dependency injection in. NET, Manning New
York, 2012.

[8] N.Sakimura, J.Bradley, M.Jones, B.deMedeiros, and
C.Mortimore, “OpenID Connect Core 1.0 incorporating er-
rata set 1”, The OpenID Foundation, specification, 2014.

[9] LDAP user authentication explained - Connect2id,
https://connect2id.com/products/ldapauth/aut
h-explained

[10] IdentityServer4 Framework,
https://github.com/IdentityServer/IdentitySe
rver4

[11] IdentityServer4 documentation,
https://identityserver4.readthedocs.io/en/re
lease/.

[12] Serilog - simple .NET logging with fully-structured events,
https://serilog.net/.

[13] S.Foglio, C.Viviani, and L.Casalegno, Use of the CNAO
Query.lvlib in the EasyLoader application, unpublished.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA003

MOPHA003
196

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

