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Abstract 
This paper analyzes the evolution of control systems for 

astronomical telescopes. We look through the lens of three 
world class telescopes: Gemini, GTC and GMT. The first 
two are in operation for twenty and ten years respectively, 
whilst the latter is currently under construction. These fa-
cilities have a planned lifetime of 50+ years, therefore ob-
solescence management is a key issue to deal with. For the 
telescopes currently under operation, their real-time dis-
tributed control systems were engineered using state-of-
the-art software and hardware available at the time of their 
design and construction. GMT and newer telescopes are no 
different in this regard, but are aiming to capitalize on the 
experiences of the previous generations so they can be bet-
ter prepared to support their operations. We will compare 
and contrast software and hardware infrastructure choices 
including operating systems, middleware and user inter-
faces with a particular focus on obsolescence management. 

INTRODUCTION 
Every facility in the world, be it an industrial manufac-

turing plant or scientific installation, relies fundamentally 
on a control system to maintain optimal levels of perfor-
mance. In addition to maintaining the control system as it 
evolves over time, support engineers must also remain in-
formed of new technology as it becomes available to make 
careful adoption decisions balancing performance and sta-
bility. Telescopes are no different in this matter, and thus 
we present two decades of telescope control system evolu-
tion with examples from three telescopes at different stages 
in their life-cycle. 

A telescope environment can be divided into three main 
control systems: the Telescope Control System, the Enclo-
sure Control System and Support Systems. The Telescope 
Control System manages the main optics and its support 
structure. The Enclosure Control System controls the 
dome, bearing systems and safety infrastructure. Finally, 
the Support Systems manage climate control, wave front 
sensors and remote observations infrastructure.  

The analysis is limited to three observatories which we 
consider a fair representation of the evolution of telescope 
control systems. We know we are not covering the full ob-
servatory universe and thus we try to compensate for this 
fact by presenting our conclusions in a technology-agnos-
tic way. 

In the next sections we will provide a short description 
of each observatory to provide a proper context. Later the 
most meaningful comparison points will be discussed with 

a closing paragraph in each section summarizing the les-
sons learned on that topic. 

CONTROL SYSTEMS OVERVIEW 
The next three sections show an introduction to each of 

the observatories under analysis.  
Gemini Control System  

The Gemini Observatory consists of twin 8.1-meter di-
ameter optical/infrared telescopes located on two 
sites,  Maunakea, Hawai'i, and Cerro Pachón, Chile. Hav-
ing an installation on both hemispheres allows the obser-
vatory to cover the whole night sky, and the longitude sep-
aration between telescopes allows for longer tracking of 
events occurring in the shared zones of the sky. Gemini be-
gan its operations in Hawai’i in 1999 and in Chile in 2000. 
It operates mostly in queue observing mode [1] and started 
operating remotely from its base facilities in 2015 [2]. 

The Gemini telescopes are amongst the largest single 
mirror telescopes in the world. They were designed to be 
multi instrument telescopes, with a center located Casse-
grain unit where the instruments are installed. [3] 

Infrastructure and geographical location alone cannot 
guarantee performance, which is why the control system is 
a key part of the Gemini Observatory to ensure that the best 
data will be acquired and provided to scientists. With this 
objective in mind, Gemini uses the Experimental Physics 
and Industrial Control System framework (EPICS) [4]. 
This system was chosen because of its widespread adop-
tion at large facilities such as particle accelerators, strong 
open source community support, and its high adaptability 
and ease of customization. It was adopted as the standard 
control framework in which to run the real-time telescope 
subsystems. 

EPICS uses Client/Server and Publish/Subscribe tech-
niques for the communication between the control comput-
ers (also called Input/Output Controllers, or IOCs). IOCs 
talk to each other, and other types of clients, using the EP-
ICS Channel Access network protocol [5]. This protocol is 
also used by the high level software that sequences science 
observations. Channel Access is used at Gemini for soft 
real-time networking applications. Dedicated communica-
tion protocols and channels are used in places where faster 
communication rates are required. 

The heart of an EPICS application is the database, a col-
lection of function-block objects called records. Most EP-
ICS records have a predefined functionality; others can be 
customized linking C code to them. Gemini developed a 
set of custom records to support the Action Command 
Model. In this model, actions are driven from changes to 
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attributes to the database records. The modified set of at-
tributes defines the new configuration of a system which is 
applied in a single step [6-8]. 

GTC Control System 
The Gran Telescopio Canarias (GTC) is currently the 

largest and one of the most advanced optical/infrared tele-
scopes in the world, it is located at the Roque de Los 
Muchachos on the Canary Islands in Spain. Its primary 
mirror consists of 36 individual hexagonal segments that 
together act as a single mirror. The surface area of the pri-
mary mirror at GTC is equivalent to that of a telescope with 
a 10.4m diameter single monolithic mirror. Its First Light 
Ceremony was celebrated in the early morning of 14th 
July, 2007. Scientific operations of the telescope started in 
March of 2009 [9.] 

The Grantecan Control System (GCS) was created to 
manage the telescope subsystems. The GCS was built and 
designed with the following requirements: ease to extend 
or adapt new changes and specifications, ease of use, re-
use the code using design patterns, portability, robustness, 
efficiency, etc. The system is based on several services 
called “common services” and distributed components 
called “Devices” [10].  

The common services are responsible for managing the 
telemetry data, logs, alarms and configurations of all De-
vices. They are composed of the following managers: 
MonitorManager [11], LogManager, AlarmManager and 
ConfigManager. The Devices can be an abstraction that 
provide a logical representation of the physical elements 
controlled by the system. They can also carry out different 
tasks such as coordination between Devices, analysis of 
data quality, etc. 

The Device interface is defined by commands, monitors, 
properties and alarms. The commands are methods associ-
ated with an action, whereas a monitor represents a physi-
cal or logical value, such as a temperature sensor value. 
Conversely, a “Property” is a read-write attribute which is 
used to configure the Device at startup and it can be 
changed at run-time, such as a conversion factor of a cal-
culation. The Device behaviour is modeled using a Finite 
State Machine (FSM) where each state defines a behavior.  

All GCS Devices are integrated with the common ser-
vices thanks to LogAgent, AlarmAgent, MonitorAgent and 
ConfigAgent which send logs, alarms, monitors and con-
figured values to each manager respectively. 

The GCS uses a real-time implementation based on the 
Common Object Request Broker Architecture (CORBA) 
which is responsible for providing connections and in-
teroperability among distributed objects or Devices in the 
system. The main benefit of using CORBA is that a client 
can transparently invoke a method on a server object, 
which can be on the same machine or across networks. The 
client does not have to be aware of where the object is lo-
cated, its programming language, its operating system, or 
any other system aspects that are not part of an object's in-
terface. To achieve this location-transparent access, it is 

necessary to use a set of distributed services which are re-
quired to guarantee a level of service (QoS) such as 
NamingService, InterfaceRepository, etc.  

GMT Control System 
The Giant Magellan Telescope (GMT) will be one mem-

ber of the next generation of giant ground-based astronom-
ical telescopes. It is a segmented telescope, with seven seg-
ments of 8.5 meters in diameter each, forming a single op-
tical surface equivalent to an aperture of 24.5 m. diameter. 
The chosen site for the GMT is Las Campanas peak, in 
Chile [12]. 

The GMT Observatory Control System (OCS) follows 
both a component-based and a model-based approach. The 
basic building block of the GMT software architecture is 
the Component, which is the root of the class hierarchy tree 
(Controller, Pipeline, Server, etc.). The Component inter-
face is defined by a set of “Component Features”, which 
can be classified into Inputs, Outputs, State Variables, 
Properties, Faults and Alarms. The State Variables define 
the observed and desired state of the system, by providing 
an output for the current value of the magnitude that they 
represent and also an input for the desired value (goal) for 
this magnitude. The GMT Components are reactive, i.e., 
their behavior is not triggered externally by commands, but 
they react to the differences between the value and the goal 
of their State Variables. 

The information flow between Components is achieved 
by means of a set of Connectors, which connect a feature 
of one Component to a reciprocal one in another Compo-
nent (see Fig. 1). For example, an Output of a higher level 
Controller can be connected to an Input, or an Alarm or 
Fault of a low level Controller can be connected to another 
Component higher in the hierarchy, so errors are easily 
propagated upstream. The chosen middleware for inter-
Component data sharing is nanomsg [13], which provides 
robust and sophisticated communication patterns that are 
abstracted out in the Frameworks to limit the coupling of 
the OCS to any external library. The preferred protocol for 
the communication to the field is Ethercat [14].  

 
Figure 1: GMT Component model. 

The set of all the Components of a module, their “Com-
ponent Features” and the “Component Connector Map” 
(either internal to the module or external) are formalized in 
the OCS model. These are used for code generation during 
the development process and also in run-time as a mecha-
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nism for the user interface (and the whole system in gen-
eral) to dynamically discover the location and interfaces 
offered by the different Components present in the system. 
See [15] for more information. 

COMPARATIVE ANALYSIS 
The following subsections present a comparative analy-

sis between several key aspects of the three Telescope Con-
trol Systems and a discussion about their evolutionary 
trends. 

Framework 
The EPICS framework used by Gemini is based on a col-

lection of “Records” of different types grouped into “data-
bases”. In this context, a Record is an object with a unique 
name, with properties (fields), a single C/C++ routine and 
optionally associated hardware input/output drivers. Each 
record field is mapped to a channel by the communication 
layer and all its values are published to the network for 
read/write access, making each stage easier to control, sim-
ulate and monitor. Databases are created using a graphical 
editor that allows dragging and dropping graphical repre-
sentations of the records. The editor provides the developer 
with a graph of the data and action flow (see Fig. 2 below). 

 
Figure 2: Example of the interaction between process 
stages of an EPICS IOC. The black blocks represent termi-
nals monitoring inner variables of the specific process. 

GMT also uses a channel oriented architecture but with 
less granularity: the building block is the component and 
not the routine. Channel oriented architectures are very 
flexible, as every channel can be connected to any other 
one with a minimum impact to the code. This provides a 
larger flexibility on the deployment and unit testing, but it 
can also lead to a complicated implementation and many 
errors being detected at runtime rather than at compilation 
time. In addition, the channel-oriented architecture of the 
GMT frameworks provide an added layer of abstraction 
between the software controllers and the hardware. This al-
lows it to separate communication problems from the im-
plementation of the control logic, and prevents a tight cou-
pling between the source code and the chosen hardware so-
lution. 

GTC uses an object oriented architecture with a strong 
coupling between components. This makes it less prone to 
errors and provides a stronger cohesion, which facilitates a 
cleaner implementation. This coupling can be minimized 

using generic interfaces. In Fig. 3 we can see a conceptual 
representation of the coupling between components for 
each observatory. 

 
Figure 3: Conceptual representation of coupling between 
software components. 

GMT and GTC use template files for their code con-
struction. When an additional attribute needs to be added, 
the template needs to be reparsed. This is useful to keep a 
clean interface for each subsystem. On GMT the templates 
that generate the initial source code skeleton stem directly 
from the requirements models. These are the same models 
used to calculate budgets in project, which means it will 
have a strong consistency throughout the whole develop-
ment process. 

To sum up, it is very useful to keep one interface model 
that needs to be synchronized to the source code. Moreo-
ver, GMT defines the connections between the different 
subsystems, which gives a clear overview of the overall 
system architecture. Regarding modularity, it is a powerful 
feature that needs to be handled with care to avoid worse 
performance. 
Middleware  

Gemini uses EPICS Channel Access, a Middleware sup-
ported by the community. The main advantage is you ben-
efit from bug fixes and new releases that are made availa-
ble. The community is very active,  comprising over 30 As-
tronomy and Physics Particle institutions worldwide. There 
is a very active email list where people exchange infor-
mation and can ask for help in case of problems. 

GTC is using CORBA, a distributed object middleware 
standardized by the Object Management Group (OMG) 
group. However, GTC developed an abstraction layer em-
bedded in its framework to isolate the CORBA-specific 
code from the domain code. This had two major goals: pro-
tect the developer against the complexities of CORBA de-
velopment and eventually facilitate the migration to an-
other middleware if needed. This was partially achieved, as 
there are some parts of the code where the CORBA system 
is exposed, but the problem is minimized as most of these 
parts are auto-generated. 

The main benefits of using CORBA were: 
• Transparency in the object location: using the CORBA 

naming service it is possible to decouple completely 
the code from the remote objects location. An applica-
tion can be changed to another physical machine, and 
the remote clients will dynamically detect it. This adds 
a lot of flexibility in the system deployment.  
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• Interoperability: CORBA has Application Program-
ming Interfaces (APIs) for several programming lan-
guages and there are Object Request Broker imple-
mentations available in multiple Operating Systems. 

• Object-oriented semantics: as CORBA provides a 
method invocation on objects (that can be either local 
or remote) with the same syntax as the programming 
language, then the integration with an object-oriented 
design is straight forward. 

Some of the drawbacks that we have identified with the 
use of CORBA include interconnection issues, debugging 
challenges and obsolescence. The interconnection prob-
lems that arise when a CORBA system is deployed in a 
network that has firewalls. There is an increased cost in the 
process of debugging a failure (either when  some part of 
the CORBA system fails, or when the configuration of the 
system is incorrect), because the broker part of the system 
is typically a black box. Finally, when the GTC telescope 
was designed, CORBA was considered the cutting edge of 
middleware, but emerging technologies contributed to its 
downfall.  

GMT is using Nanomsg, which is a socket library that 
provides several communication patterns, like pair (one-to-
one), pub/sub (one-to-many), pipeline, etc.. It works in a 
wide range of operating systems and there are implemen-
tations available in multiple programming languages. Na-
nomsg can be thought of as a “smart sockets” implementa-
tion that handles all the typical complexity about handling 
connections: message fragmentation, connection failures 
and multi-element communications. In contrast to EPICS 
and CORBA, Nanomsg only provides communication ca-
pabilities, but it does not provide any higher level abstrac-
tion like remote method invocation or object access. These 
higher level features are provided by the GMT frameworks 
which use Nanomsg as the underlying messaging library. 
The coupling to Nanomsg is contained within the frame-
works and the domain code is not exposed to it. 

The main benefits of Nanomsg are: 
• Powerful communication patterns for data exchange, 

that are provided off the shelf 
• Enhanced system robustness, as most of the connec-

tion complexities and their related failures are grace-
fully handled 

• Very high message throughput 
• Very good interoperability 

The fact that Nanomsg is only a light-weight messaging 
library is a two-edged sword: it has a very good perfor-
mance and it allows a lot of flexibility, but at the same time 
it requires a high effort for the framework developers to 
wrap it with a component model that provides all the 
needed functionality. In addition, there are some concerns 
about the projection of Nanomsg to the future, because it 
is a relatively new technology and its community is not 
very wide. 

 The main difference in this aspect is that Gemini sticks 
to a specific middleware, while the other two have written 
an intermediate abstraction layer that had a higher up-front 

cost but gives the flexibility of switching to other middle-
ware having only to  rewrite the adapter/interface layer. 
Not being attached to a specific technology in long term 
projects might be an advantage at the end. 

Programming Languages 
The adopted programming languages for real-time exe-

cution are very homogeneous in the three observatories. 
Gemini started using C, which was the most common op-
tion for systems programming, and then they gradually 
adopted C++ for real-time programming. C++ has proven 
to also be a valid language for real-time and systems pro-
gramming, while offering a higher level of abstraction, 
more readability and a large set of available libraries. GTC 
and GMT, on their part, have standardized the use of C++ 
as the real-time language since the beginning of their pro-
jects. 

For scripting, data analysis and image processing pipe-
lines the three observatories started with different solutions 
(IRAF, IDL, raw C++, shell scripts) but now they have 
adopted the same programming language, Python. This 
language features a very readable syntax, with a relatively 
shallow learning curve. In the latest years, the engineering 
and scientific communities have shown a tendency towards 
this language which, in turn, has led to an increased avail-
ability of data processing and scientific-oriented libraries.  

On the other side, there is more diversity in the choice 
for the user interfaces and observatory services. Gemini 
uses DM, EDM (both EPICS-centric) and TCL/TK.  GTC 
initially adopted Java for the user interface, along with the 
Swing library for the graphical part, and some parts of the 
jSky system for the astronomical data display. In addition, 
GTC is also currently transitioning to Java for the observa-
tory services (telemetry, etc.), as in the latest decades the 
enterprise software community has been providing very 
good solutions for data persistence and clustered services 
execution. Finally, the standard language in GMT for the 
user interface and services is Coffeescript, a language that 
can be transpiled into Javascript and then executed in a 
Nodejs environment. This allows GMT to join the current 
trends of the industry (specifically, the web-based solutions 
industry) for front-end and back-end development. 

In summary, real-time environment keeps its path on 
C/C++ there has been no major breakthrough on this kind 
of languages in the last decades. For data analysis Python 
has taken over, especially in the last decade and is now 
mainstream. While on GUIs there are constant changes and 
several choices, the choice usually lies on the mainstream 
of that era, currently this is a web-based environment, all 
three observatories are slowly tending to it. 

Operating Systems 
Initially on Gemini and GTC the real-time operating sys-

tem (RTOS) as well as the general purpose operating sys-
tem (OS) were the same, VxWorks [16] for the RTOS and 
Solaris Sparc for general purpose OS. Due to obsolescence 
both were forced to search for alternatives when upgrading 
their OSs. In the past few years Gemini was engaged in a 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP06

Software Technology Evolution
MOBPP06

55

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



major effort to upgrade its RTOS to RTEMS [17]. Mean-
while, GTC is working on a new standard for its real-time 
platform, building its first prototype under Linux Preempt-
RT patch. 

The Gemini Real Time Upgrade [18] included an update 
to a newer version of EPICS that implements an Operating 
System Independent (OSI) layer, which means that the 
source code can run on different operating systems without 
modifications.  

Conversely, GMT has opted for Linux Preempt-RT, prof-
iting from the usage of the Linux standard tools and librar-
ies. This has freed development from the need for specific 
real-time APIs such as VxWorks and RTEMS. Also, Linux 
has a strongly supported global community that keeps the 
OS updated with new technologies and features. One of its 
main features is its top of the line debugging facilities. 

The key takeaway is that there are usually very few OS 
dependant calls in a Control System, it is worth handling 
these with an abstraction layer which makes porting to 
other OS seamless. All three projects have adopted this ap-
proach. 

Hardware 
Gemini has a strong coupling to its hardware peripherals, 

while GMT is implementing a loose coupling as a proac-
tive obsolescence strategy. Currently, GTC hardware cou-
pling is closer to that of Gemini, but it is adopting a more 
flexible/obsolescence-aware design in its latest systems. In 
this example (Fig. 4) we see a representation of the stand-
ard control systems. On the older telescopes the hardware 
interface code is very entangled with the Controller source 
code, while on GMT and GTC (2019) the controller code 
interacts with a single fieldbus interface. This achieves an 
efficient decoupling between the Controller and its hard-
ware components. 

 
Figure 4: Hardware component coupling seen on a stand-
ard subsystem. 

Regarding the core hardware platform, we are observing 
a shift from VME based systems to more general purpose 
platforms, e.g. PCs running LinuxRT. This is driven on the 

software side by the huge utilities/support that environ-
ments like Linux provide and on the hardware side by ven-
dors continually developing interfaces and support for 
standard PCs. 

Telescopes are expected to last 50+ years in that 
timespan the hardware will change dramatically. No ven-
dor guarantees its products for a decade. It could happen 
that some part of the hardware stops being produced which 
means the hardware might not even be subject to repair. 
Worst case scenario, vendors can go out of business with 
no direct alternatives available. 

Summarizing, it is good practice to modularize compo-
nents at hardware level, in a way that allows for the domain 
code to remain as stable as possible. As an example, a 
fieldbus gives you much more flexibility than a hardware 
concentrated system (e.g. VME, cPCI). In the case of the 
VME bus you are forced into hardware that fits your phys-
ical system, this means you need to support all the drivers 
for the different hardware while when relying on a fieldbus 
you just need to support its communication protocol and 
standards. 

Philosophically, the goal is to move most of the inter-
faces between the control system and the hardware as close 
to the final control devices and as far away from the CPU 
as possible. 

Engineering Databases 
At the beginning, databases used to store telemetry data 

did not play an important role in a telescope control envi-
ronment. As an example of this, both Gemini and GTC 
started operations without process values databases. The 
Telescope telemetry was stored in binary files and this was 
used to diagnose errors after they occurred. With the pass-
ing of the years, the evolution of Systems Engineering and 
the emergence of Big Data, engineers have realized that 
there is a very big potential in all the telemetry data gath-
ered by the telescopes. This collected data would allow us 
to predict possible faults. In that sense GTC has con-
structed models based on that data which have helped to 
prevent errors and improve the system. GMT is actively 
planning, since its design stage, to make a profit from that 
data. 

In this aspect the underlying technology has not played 
a key role, this is shown as GTC is using a relational data-
base (MySQL) and GMT is using a non-relational database 
(MongoDB). Even using different technologies, the most 
important thing is the data analysis and the concept of us-
ing this valuable data.  

Graphical User Interfaces 
The graphical user interface, GUI, is one of the compo-

nents of a control environment that has seen considerable 
transformations over the years. Initially a GUI displayed 
very basic information since it was meant as a peripheral 
tool for the user. A simple command would require the user 
to manually calculate values, manage several windows to 
control the individual components and often interact with 
the electro-mechanical hardware directly. 
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In the last twenty years new technologies as Java Swing 
and later Web GUI toolkits have emerged. These kits al-
lowed for the development of more sophisticated  GUIs, 
which were able to provide a more realistic representation 
of the real system. Thanks to technology advancement and 
good engineering criteria, GUIs have become more user 
friendly. This has allowed the user to interact with the sys-
tem in an easier and more intuitive way, improving overall 
performance. Smarter implementation has led to higher 
level actions. In these cases, the users configure the system 
for a ‘goal’ they want and the system knows the ‘steps’ to 
configure every single component according to user needs 
[19].  

On Fig. 5 we show one of the many screens that are used 
to control each of the telescopes, it is one of the key screens 
that shows a general overview of the telescope status. 

 
Figure 5: GUIs from different telescopes. 

In this context, it is possible to see a clear evolution in 
the technologies, Gemini uses EDM and Tcl/TK, GTC uses 
Java and GMT uses ElectronJS to develop their interfaces. 
Currently, there is a trend to use web frameworks to de-
velop GUIs and GMT has opted for it, benefiting from a 
strong community and tools to make agile development.  

Clearly GUIs have gained importance during the years 
and are currently a key element to efficiently run any tele-
scope. For this reason, GMT included GUI development in 
their initial design stage. It is worthwhile to mention that 
in the early days, understanding the system through the 
numbers shown on the screen was very challenging. Now-
adays it is the other way round, it is easier to understand a 
system from its GUI than from the real physical system. 

CONCLUSIONS 
The most significant conclusion that we draw from our 

analysis is the importance of obsolescence management as 
a challenge for astronomical telescope control systems. 
Normally, the lifetime of such facilities goes well over 50 
years. In this timespan, the available hardware will evolve 
several leaps, with each leap driving the control software. 
Other software, e.g. operating systems or external libraries, 
can evolve much more rapidly, with several generations of 
a product in a few decades.  

Earlier telescopes such as Gemini, did not consider ob-
solescence, and have had to spend considerable effort in 
the operations phase to catch up with change. In contrast, 
as designers have become more aware of this fact, more 
telescope control systems are including obsolescence con-
trol in their project design requirements.  

As a result, the newer generations have incorporated the 
obsolescence control deeply in the system architecture. 
This is achieved mainly by in-house developed frame-
works that allow for a separation between the domain code 

and the underlying technologies. These frameworks mini-
mize strong coupling between the system elements and the 
hardware, by adding an additional software abstraction 
layer. 

When it comes to programming languages and operating 
systems, the differences between the three observatories 
have a different source. While the obsolescence control can 
be considered as a “lesson learned” evolution, the changes 
in the programming languages in use at the different insti-
tutions reflect which were the mainstream adopted solu-
tions when each system was designed. For real-time the 
three observatories have a similar solution and evolution 
(C and C++ for language, VxWorks first and then RTEMS 
or Linux-RT for OS), as it has also been the standard used 
by the industry in the latest decades. For UI programming 
the choices are more diverse, but it is clear that each obser-
vatory adopted the most common option at their time: 
TCL/TK and Epics-centric solutions for Gemini, Java for 
GTC and Nodejs for GMT. 

The key takeaways from each section could be summa-
rized as the following: 

• Framework: Channel oriented architectures are very 
flexible, although this opens many possibilities which 
can lead to an entangled implementation, thus it is ad-
vised to have an interface source file that defines its 
external interface and a connection map. 

• Middleware: An intermediate abstraction layer is a 
useful safeguard in the event of a chosen technology 
getting obsolete. 

• Programming languages: RT programming languages 
are C and C++, these show slow to no evolution, stick-
ing with industry standards. On general purpose lan-
guages many functions programmed in a variety of 
languages are merging into Python. On the GUI devel-
opment we can see a wilder language panorama with a 
diverse and quickly evolving landscape. 

• Operating Systems: The small set of OS specific calls 
should be handled under an abstraction layer to enable 
a seamless transition to a different OS. 

• Hardware: In this case a well placed abstraction layer 
will play a key role to ease hardware replacement, hav-
ing a hardware abstraction layer like a fieldbus seems 
to be a good strategy to further leverage loose coupling 
to a specific piece of hardware 

• Databases: Collecting and storing data cannot only be 
used for postmortem analysis, but to predict system 
degradation and faults, and schedule preventive 
maintenance work to avoid these. 

• GUIs: A well designed GUI will enhance the opera-
tional efficiency as well as the user experience, nowa-
days technology enables us to develop an excellent hu-
man machine interface. 

An important observation from this work is how the con-
trol systems software landscape has changed since 20 years 
ago. Back in the early 2000s, a lot of the well established 
control environments/frameworks were not flexible 
enough to accommodate for the demands of Observatories. 
This meant that an “open source” system like EPICS, was 
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the better alternative to handle the low level interaction re-
quirements. Therefore, if a required driver was not readily 
available, the solution could be developed in house, with-
out the time and overhead costs of going through a vendor.  

Fast forward to today, and the increase in the number of 
telescopes worldwide has meant that established vendors 
see observatories as potential clients. Current automation 
and control devices comply perfectly with the performance 
and flexibility requirements for telescope control. These 
same vendors are tapping into the human know-how of the 
past two decades. As a result, control devices, hardware, 
firmware and software are being commercially developed 
with built-in support suited to Observatories standards.  

A trend that can be observed in the newer projects is that 
the low-level motion control is outsourced to external ven-
dors, which also usually provide the hardware itself. How-
ever, most of the higher level software is still developed in-
house. This is due to two reasons: requirements that evolve 
continuously, and the need for dynamic upgrades and effi-
cient maintenance. 
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