
20 YEARS OF WORLD CLASS TELESCOPE
CONTROL SYSTEMS EVOLUTION

T. D. Gaggstatter*, I. Arriagada, P. E. Gigoux, R. Rojas, Gemini Observatory, La Serena, Chile
J. Molgo, GMTO Corporation, Pasadena, California, USA
F. Ramos, Grantecan S.A., Breña Baja, La Palma, Spain

Abstract
This paper analyzes the evolution of control systems for

astronomical telescopes. We look through the lens of three
world class telescopes: Gemini, GTC and GMT. The first
two are in operation for twenty and ten years respectively,
whilst the latter is currently under construction. These fa-
cilities have a planned lifetime of 50+ years, therefore ob-
solescence management is a key issue to deal with. For the
telescopes currently under operation, their real-time dis-
tributed control systems were engineered using state-of-
the-art software and hardware available at the time of their
design and construction. GMT and newer telescopes are no
different in this regard, but are aiming to capitalize on the
experiences of the previous generations so they can be bet-
ter prepared to support their operations. We will compare
and contrast software and hardware infrastructure choices
including operating systems, middleware and user inter-
faces with a particular focus on obsolescence management.

INTRODUCTION
Every facility in the world, be it an industrial manufac-

turing plant or scientific installation, relies fundamentally
on a control system to maintain optimal levels of perfor-
mance. In addition to maintaining the control system as it
evolves over time, support engineers must also remain in-
formed of new technology as it becomes available to make
careful adoption decisions balancing performance and sta-
bility. Telescopes are no different in this matter, and thus
we present two decades of telescope control system evolu-
tion with examples from three telescopes at different stages
in their life-cycle.

A telescope environment can be divided into three main
control systems: the Telescope Control System, the Enclo-
sure Control System and Support Systems. The Telescope
Control System manages the main optics and its support
structure. The Enclosure Control System controls the
dome, bearing systems and safety infrastructure. Finally,
the Support Systems manage climate control, wave front
sensors and remote observations infrastructure.

The analysis is limited to three observatories which we
consider a fair representation of the evolution of telescope
control systems. We know we are not covering the full ob-
servatory universe and thus we try to compensate for this
fact by presenting our conclusions in a technology-agnos-
tic way.

In the next sections we will provide a short description
of each observatory to provide a proper context. Later the
most meaningful comparison points will be discussed with

a closing paragraph in each section summarizing the les-
sons learned on that topic.

CONTROL SYSTEMS OVERVIEW
The next three sections show an introduction to each of

the observatories under analysis.
Gemini Control System

The Gemini Observatory consists of twin 8.1-meter di-
ameter optical/infrared telescopes located on two
sites, Maunakea, Hawai'i, and Cerro Pachón, Chile. Hav-
ing an installation on both hemispheres allows the obser-
vatory to cover the whole night sky, and the longitude sep-
aration between telescopes allows for longer tracking of
events occurring in the shared zones of the sky. Gemini be-
gan its operations in Hawai’i in 1999 and in Chile in 2000.
It operates mostly in queue observing mode [1] and started
operating remotely from its base facilities in 2015 [2].

The Gemini telescopes are amongst the largest single
mirror telescopes in the world. They were designed to be
multi instrument telescopes, with a center located Casse-
grain unit where the instruments are installed. [3]

Infrastructure and geographical location alone cannot
guarantee performance, which is why the control system is
a key part of the Gemini Observatory to ensure that the best
data will be acquired and provided to scientists. With this
objective in mind, Gemini uses the Experimental Physics
and Industrial Control System framework (EPICS) [4].
This system was chosen because of its widespread adop-
tion at large facilities such as particle accelerators, strong
open source community support, and its high adaptability
and ease of customization. It was adopted as the standard
control framework in which to run the real-time telescope
subsystems.

EPICS uses Client/Server and Publish/Subscribe tech-
niques for the communication between the control comput-
ers (also called Input/Output Controllers, or IOCs). IOCs
talk to each other, and other types of clients, using the EP-
ICS Channel Access network protocol [5]. This protocol is
also used by the high level software that sequences science
observations. Channel Access is used at Gemini for soft
real-time networking applications. Dedicated communica-
tion protocols and channels are used in places where faster
communication rates are required.

The heart of an EPICS application is the database, a col-
lection of function-block objects called records. Most EP-
ICS records have a predefined functionality; others can be
customized linking C code to them. Gemini developed a
set of custom records to support the Action Command
Model. In this model, actions are driven from changes to

 __

* tgaggstatter@gemini.edu

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP06

MOBPP06
52

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

attributes to the database records. The modified set of at-
tributes defines the new configuration of a system which is
applied in a single step [6-8].

GTC Control System
The Gran Telescopio Canarias (GTC) is currently the

largest and one of the most advanced optical/infrared tele-
scopes in the world, it is located at the Roque de Los
Muchachos on the Canary Islands in Spain. Its primary
mirror consists of 36 individual hexagonal segments that
together act as a single mirror. The surface area of the pri-
mary mirror at GTC is equivalent to that of a telescope with
a 10.4m diameter single monolithic mirror. Its First Light
Ceremony was celebrated in the early morning of 14th
July, 2007. Scientific operations of the telescope started in
March of 2009 [9.]

The Grantecan Control System (GCS) was created to
manage the telescope subsystems. The GCS was built and
designed with the following requirements: ease to extend
or adapt new changes and specifications, ease of use, re-
use the code using design patterns, portability, robustness,
efficiency, etc. The system is based on several services
called “common services” and distributed components
called “Devices” [10].

The common services are responsible for managing the
telemetry data, logs, alarms and configurations of all De-
vices. They are composed of the following managers:
MonitorManager [11], LogManager, AlarmManager and
ConfigManager. The Devices can be an abstraction that
provide a logical representation of the physical elements
controlled by the system. They can also carry out different
tasks such as coordination between Devices, analysis of
data quality, etc.

The Device interface is defined by commands, monitors,
properties and alarms. The commands are methods associ-
ated with an action, whereas a monitor represents a physi-
cal or logical value, such as a temperature sensor value.
Conversely, a “Property” is a read-write attribute which is
used to configure the Device at startup and it can be
changed at run-time, such as a conversion factor of a cal-
culation. The Device behaviour is modeled using a Finite
State Machine (FSM) where each state defines a behavior.

All GCS Devices are integrated with the common ser-
vices thanks to LogAgent, AlarmAgent, MonitorAgent and
ConfigAgent which send logs, alarms, monitors and con-
figured values to each manager respectively.

The GCS uses a real-time implementation based on the
Common Object Request Broker Architecture (CORBA)
which is responsible for providing connections and in-
teroperability among distributed objects or Devices in the
system. The main benefit of using CORBA is that a client
can transparently invoke a method on a server object,
which can be on the same machine or across networks. The
client does not have to be aware of where the object is lo-
cated, its programming language, its operating system, or
any other system aspects that are not part of an object's in-
terface. To achieve this location-transparent access, it is

necessary to use a set of distributed services which are re-
quired to guarantee a level of service (QoS) such as
NamingService, InterfaceRepository, etc.

GMT Control System
The Giant Magellan Telescope (GMT) will be one mem-

ber of the next generation of giant ground-based astronom-
ical telescopes. It is a segmented telescope, with seven seg-
ments of 8.5 meters in diameter each, forming a single op-
tical surface equivalent to an aperture of 24.5 m. diameter.
The chosen site for the GMT is Las Campanas peak, in
Chile [12].

The GMT Observatory Control System (OCS) follows
both a component-based and a model-based approach. The
basic building block of the GMT software architecture is
the Component, which is the root of the class hierarchy tree
(Controller, Pipeline, Server, etc.). The Component inter-
face is defined by a set of “Component Features”, which
can be classified into Inputs, Outputs, State Variables,
Properties, Faults and Alarms. The State Variables define
the observed and desired state of the system, by providing
an output for the current value of the magnitude that they
represent and also an input for the desired value (goal) for
this magnitude. The GMT Components are reactive, i.e.,
their behavior is not triggered externally by commands, but
they react to the differences between the value and the goal
of their State Variables.

The information flow between Components is achieved
by means of a set of Connectors, which connect a feature
of one Component to a reciprocal one in another Compo-
nent (see Fig. 1). For example, an Output of a higher level
Controller can be connected to an Input, or an Alarm or
Fault of a low level Controller can be connected to another
Component higher in the hierarchy, so errors are easily
propagated upstream. The chosen middleware for inter-
Component data sharing is nanomsg [13], which provides
robust and sophisticated communication patterns that are
abstracted out in the Frameworks to limit the coupling of
the OCS to any external library. The preferred protocol for
the communication to the field is Ethercat [14].

Figure 1: GMT Component model.

The set of all the Components of a module, their “Com-
ponent Features” and the “Component Connector Map”
(either internal to the module or external) are formalized in
the OCS model. These are used for code generation during
the development process and also in run-time as a mecha-

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP06

Software Technology Evolution
MOBPP06

53

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

nism for the user interface (and the whole system in gen-
eral) to dynamically discover the location and interfaces
offered by the different Components present in the system.
See [15] for more information.

COMPARATIVE ANALYSIS
The following subsections present a comparative analy-

sis between several key aspects of the three Telescope Con-
trol Systems and a discussion about their evolutionary
trends.

Framework
The EPICS framework used by Gemini is based on a col-

lection of “Records” of different types grouped into “data-
bases”. In this context, a Record is an object with a unique
name, with properties (fields), a single C/C++ routine and
optionally associated hardware input/output drivers. Each
record field is mapped to a channel by the communication
layer and all its values are published to the network for
read/write access, making each stage easier to control, sim-
ulate and monitor. Databases are created using a graphical
editor that allows dragging and dropping graphical repre-
sentations of the records. The editor provides the developer
with a graph of the data and action flow (see Fig. 2 below).

Figure 2: Example of the interaction between process
stages of an EPICS IOC. The black blocks represent termi-
nals monitoring inner variables of the specific process.

GMT also uses a channel oriented architecture but with
less granularity: the building block is the component and
not the routine. Channel oriented architectures are very
flexible, as every channel can be connected to any other
one with a minimum impact to the code. This provides a
larger flexibility on the deployment and unit testing, but it
can also lead to a complicated implementation and many
errors being detected at runtime rather than at compilation
time. In addition, the channel-oriented architecture of the
GMT frameworks provide an added layer of abstraction
between the software controllers and the hardware. This al-
lows it to separate communication problems from the im-
plementation of the control logic, and prevents a tight cou-
pling between the source code and the chosen hardware so-
lution.

GTC uses an object oriented architecture with a strong
coupling between components. This makes it less prone to
errors and provides a stronger cohesion, which facilitates a
cleaner implementation. This coupling can be minimized

using generic interfaces. In Fig. 3 we can see a conceptual
representation of the coupling between components for
each observatory.

Figure 3: Conceptual representation of coupling between
software components.

GMT and GTC use template files for their code con-
struction. When an additional attribute needs to be added,
the template needs to be reparsed. This is useful to keep a
clean interface for each subsystem. On GMT the templates
that generate the initial source code skeleton stem directly
from the requirements models. These are the same models
used to calculate budgets in project, which means it will
have a strong consistency throughout the whole develop-
ment process.

To sum up, it is very useful to keep one interface model
that needs to be synchronized to the source code. Moreo-
ver, GMT defines the connections between the different
subsystems, which gives a clear overview of the overall
system architecture. Regarding modularity, it is a powerful
feature that needs to be handled with care to avoid worse
performance.
Middleware

Gemini uses EPICS Channel Access, a Middleware sup-
ported by the community. The main advantage is you ben-
efit from bug fixes and new releases that are made availa-
ble. The community is very active, comprising over 30 As-
tronomy and Physics Particle institutions worldwide. There
is a very active email list where people exchange infor-
mation and can ask for help in case of problems.

GTC is using CORBA, a distributed object middleware
standardized by the Object Management Group (OMG)
group. However, GTC developed an abstraction layer em-
bedded in its framework to isolate the CORBA-specific
code from the domain code. This had two major goals: pro-
tect the developer against the complexities of CORBA de-
velopment and eventually facilitate the migration to an-
other middleware if needed. This was partially achieved, as
there are some parts of the code where the CORBA system
is exposed, but the problem is minimized as most of these
parts are auto-generated.

The main benefits of using CORBA were:
• Transparency in the object location: using the CORBA

naming service it is possible to decouple completely
the code from the remote objects location. An applica-
tion can be changed to another physical machine, and
the remote clients will dynamically detect it. This adds
a lot of flexibility in the system deployment.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP06

MOBPP06
54

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

• Interoperability: CORBA has Application Program-
ming Interfaces (APIs) for several programming lan-
guages and there are Object Request Broker imple-
mentations available in multiple Operating Systems.

• Object-oriented semantics: as CORBA provides a
method invocation on objects (that can be either local
or remote) with the same syntax as the programming
language, then the integration with an object-oriented
design is straight forward.

Some of the drawbacks that we have identified with the
use of CORBA include interconnection issues, debugging
challenges and obsolescence. The interconnection prob-
lems that arise when a CORBA system is deployed in a
network that has firewalls. There is an increased cost in the
process of debugging a failure (either when some part of
the CORBA system fails, or when the configuration of the
system is incorrect), because the broker part of the system
is typically a black box. Finally, when the GTC telescope
was designed, CORBA was considered the cutting edge of
middleware, but emerging technologies contributed to its
downfall.

GMT is using Nanomsg, which is a socket library that
provides several communication patterns, like pair (one-to-
one), pub/sub (one-to-many), pipeline, etc.. It works in a
wide range of operating systems and there are implemen-
tations available in multiple programming languages. Na-
nomsg can be thought of as a “smart sockets” implementa-
tion that handles all the typical complexity about handling
connections: message fragmentation, connection failures
and multi-element communications. In contrast to EPICS
and CORBA, Nanomsg only provides communication ca-
pabilities, but it does not provide any higher level abstrac-
tion like remote method invocation or object access. These
higher level features are provided by the GMT frameworks
which use Nanomsg as the underlying messaging library.
The coupling to Nanomsg is contained within the frame-
works and the domain code is not exposed to it.

The main benefits of Nanomsg are:
• Powerful communication patterns for data exchange,

that are provided off the shelf
• Enhanced system robustness, as most of the connec-

tion complexities and their related failures are grace-
fully handled

• Very high message throughput
• Very good interoperability

The fact that Nanomsg is only a light-weight messaging
library is a two-edged sword: it has a very good perfor-
mance and it allows a lot of flexibility, but at the same time
it requires a high effort for the framework developers to
wrap it with a component model that provides all the
needed functionality. In addition, there are some concerns
about the projection of Nanomsg to the future, because it
is a relatively new technology and its community is not
very wide.

 The main difference in this aspect is that Gemini sticks
to a specific middleware, while the other two have written
an intermediate abstraction layer that had a higher up-front

cost but gives the flexibility of switching to other middle-
ware having only to rewrite the adapter/interface layer.
Not being attached to a specific technology in long term
projects might be an advantage at the end.

Programming Languages
The adopted programming languages for real-time exe-

cution are very homogeneous in the three observatories.
Gemini started using C, which was the most common op-
tion for systems programming, and then they gradually
adopted C++ for real-time programming. C++ has proven
to also be a valid language for real-time and systems pro-
gramming, while offering a higher level of abstraction,
more readability and a large set of available libraries. GTC
and GMT, on their part, have standardized the use of C++
as the real-time language since the beginning of their pro-
jects.

For scripting, data analysis and image processing pipe-
lines the three observatories started with different solutions
(IRAF, IDL, raw C++, shell scripts) but now they have
adopted the same programming language, Python. This
language features a very readable syntax, with a relatively
shallow learning curve. In the latest years, the engineering
and scientific communities have shown a tendency towards
this language which, in turn, has led to an increased avail-
ability of data processing and scientific-oriented libraries.

On the other side, there is more diversity in the choice
for the user interfaces and observatory services. Gemini
uses DM, EDM (both EPICS-centric) and TCL/TK. GTC
initially adopted Java for the user interface, along with the
Swing library for the graphical part, and some parts of the
jSky system for the astronomical data display. In addition,
GTC is also currently transitioning to Java for the observa-
tory services (telemetry, etc.), as in the latest decades the
enterprise software community has been providing very
good solutions for data persistence and clustered services
execution. Finally, the standard language in GMT for the
user interface and services is Coffeescript, a language that
can be transpiled into Javascript and then executed in a
Nodejs environment. This allows GMT to join the current
trends of the industry (specifically, the web-based solutions
industry) for front-end and back-end development.

In summary, real-time environment keeps its path on
C/C++ there has been no major breakthrough on this kind
of languages in the last decades. For data analysis Python
has taken over, especially in the last decade and is now
mainstream. While on GUIs there are constant changes and
several choices, the choice usually lies on the mainstream
of that era, currently this is a web-based environment, all
three observatories are slowly tending to it.

Operating Systems
Initially on Gemini and GTC the real-time operating sys-

tem (RTOS) as well as the general purpose operating sys-
tem (OS) were the same, VxWorks [16] for the RTOS and
Solaris Sparc for general purpose OS. Due to obsolescence
both were forced to search for alternatives when upgrading
their OSs. In the past few years Gemini was engaged in a

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP06

Software Technology Evolution
MOBPP06

55

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

major effort to upgrade its RTOS to RTEMS [17]. Mean-
while, GTC is working on a new standard for its real-time
platform, building its first prototype under Linux Preempt-
RT patch.

The Gemini Real Time Upgrade [18] included an update
to a newer version of EPICS that implements an Operating
System Independent (OSI) layer, which means that the
source code can run on different operating systems without
modifications.

Conversely, GMT has opted for Linux Preempt-RT, prof-
iting from the usage of the Linux standard tools and librar-
ies. This has freed development from the need for specific
real-time APIs such as VxWorks and RTEMS. Also, Linux
has a strongly supported global community that keeps the
OS updated with new technologies and features. One of its
main features is its top of the line debugging facilities.

The key takeaway is that there are usually very few OS
dependant calls in a Control System, it is worth handling
these with an abstraction layer which makes porting to
other OS seamless. All three projects have adopted this ap-
proach.

Hardware
Gemini has a strong coupling to its hardware peripherals,

while GMT is implementing a loose coupling as a proac-
tive obsolescence strategy. Currently, GTC hardware cou-
pling is closer to that of Gemini, but it is adopting a more
flexible/obsolescence-aware design in its latest systems. In
this example (Fig. 4) we see a representation of the stand-
ard control systems. On the older telescopes the hardware
interface code is very entangled with the Controller source
code, while on GMT and GTC (2019) the controller code
interacts with a single fieldbus interface. This achieves an
efficient decoupling between the Controller and its hard-
ware components.

Figure 4: Hardware component coupling seen on a stand-
ard subsystem.

Regarding the core hardware platform, we are observing
a shift from VME based systems to more general purpose
platforms, e.g. PCs running LinuxRT. This is driven on the

software side by the huge utilities/support that environ-
ments like Linux provide and on the hardware side by ven-
dors continually developing interfaces and support for
standard PCs.

Telescopes are expected to last 50+ years in that
timespan the hardware will change dramatically. No ven-
dor guarantees its products for a decade. It could happen
that some part of the hardware stops being produced which
means the hardware might not even be subject to repair.
Worst case scenario, vendors can go out of business with
no direct alternatives available.

Summarizing, it is good practice to modularize compo-
nents at hardware level, in a way that allows for the domain
code to remain as stable as possible. As an example, a
fieldbus gives you much more flexibility than a hardware
concentrated system (e.g. VME, cPCI). In the case of the
VME bus you are forced into hardware that fits your phys-
ical system, this means you need to support all the drivers
for the different hardware while when relying on a fieldbus
you just need to support its communication protocol and
standards.

Philosophically, the goal is to move most of the inter-
faces between the control system and the hardware as close
to the final control devices and as far away from the CPU
as possible.

Engineering Databases
At the beginning, databases used to store telemetry data

did not play an important role in a telescope control envi-
ronment. As an example of this, both Gemini and GTC
started operations without process values databases. The
Telescope telemetry was stored in binary files and this was
used to diagnose errors after they occurred. With the pass-
ing of the years, the evolution of Systems Engineering and
the emergence of Big Data, engineers have realized that
there is a very big potential in all the telemetry data gath-
ered by the telescopes. This collected data would allow us
to predict possible faults. In that sense GTC has con-
structed models based on that data which have helped to
prevent errors and improve the system. GMT is actively
planning, since its design stage, to make a profit from that
data.

In this aspect the underlying technology has not played
a key role, this is shown as GTC is using a relational data-
base (MySQL) and GMT is using a non-relational database
(MongoDB). Even using different technologies, the most
important thing is the data analysis and the concept of us-
ing this valuable data.

Graphical User Interfaces
The graphical user interface, GUI, is one of the compo-

nents of a control environment that has seen considerable
transformations over the years. Initially a GUI displayed
very basic information since it was meant as a peripheral
tool for the user. A simple command would require the user
to manually calculate values, manage several windows to
control the individual components and often interact with
the electro-mechanical hardware directly.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP06

MOBPP06
56

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

In the last twenty years new technologies as Java Swing
and later Web GUI toolkits have emerged. These kits al-
lowed for the development of more sophisticated GUIs,
which were able to provide a more realistic representation
of the real system. Thanks to technology advancement and
good engineering criteria, GUIs have become more user
friendly. This has allowed the user to interact with the sys-
tem in an easier and more intuitive way, improving overall
performance. Smarter implementation has led to higher
level actions. In these cases, the users configure the system
for a ‘goal’ they want and the system knows the ‘steps’ to
configure every single component according to user needs
[19].

On Fig. 5 we show one of the many screens that are used
to control each of the telescopes, it is one of the key screens
that shows a general overview of the telescope status.

Figure 5: GUIs from different telescopes.

In this context, it is possible to see a clear evolution in
the technologies, Gemini uses EDM and Tcl/TK, GTC uses
Java and GMT uses ElectronJS to develop their interfaces.
Currently, there is a trend to use web frameworks to de-
velop GUIs and GMT has opted for it, benefiting from a
strong community and tools to make agile development.

Clearly GUIs have gained importance during the years
and are currently a key element to efficiently run any tele-
scope. For this reason, GMT included GUI development in
their initial design stage. It is worthwhile to mention that
in the early days, understanding the system through the
numbers shown on the screen was very challenging. Now-
adays it is the other way round, it is easier to understand a
system from its GUI than from the real physical system.

CONCLUSIONS
The most significant conclusion that we draw from our

analysis is the importance of obsolescence management as
a challenge for astronomical telescope control systems.
Normally, the lifetime of such facilities goes well over 50
years. In this timespan, the available hardware will evolve
several leaps, with each leap driving the control software.
Other software, e.g. operating systems or external libraries,
can evolve much more rapidly, with several generations of
a product in a few decades.

Earlier telescopes such as Gemini, did not consider ob-
solescence, and have had to spend considerable effort in
the operations phase to catch up with change. In contrast,
as designers have become more aware of this fact, more
telescope control systems are including obsolescence con-
trol in their project design requirements.

As a result, the newer generations have incorporated the
obsolescence control deeply in the system architecture.
This is achieved mainly by in-house developed frame-
works that allow for a separation between the domain code

and the underlying technologies. These frameworks mini-
mize strong coupling between the system elements and the
hardware, by adding an additional software abstraction
layer.

When it comes to programming languages and operating
systems, the differences between the three observatories
have a different source. While the obsolescence control can
be considered as a “lesson learned” evolution, the changes
in the programming languages in use at the different insti-
tutions reflect which were the mainstream adopted solu-
tions when each system was designed. For real-time the
three observatories have a similar solution and evolution
(C and C++ for language, VxWorks first and then RTEMS
or Linux-RT for OS), as it has also been the standard used
by the industry in the latest decades. For UI programming
the choices are more diverse, but it is clear that each obser-
vatory adopted the most common option at their time:
TCL/TK and Epics-centric solutions for Gemini, Java for
GTC and Nodejs for GMT.

The key takeaways from each section could be summa-
rized as the following:

• Framework: Channel oriented architectures are very
flexible, although this opens many possibilities which
can lead to an entangled implementation, thus it is ad-
vised to have an interface source file that defines its
external interface and a connection map.

• Middleware: An intermediate abstraction layer is a
useful safeguard in the event of a chosen technology
getting obsolete.

• Programming languages: RT programming languages
are C and C++, these show slow to no evolution, stick-
ing with industry standards. On general purpose lan-
guages many functions programmed in a variety of
languages are merging into Python. On the GUI devel-
opment we can see a wilder language panorama with a
diverse and quickly evolving landscape.

• Operating Systems: The small set of OS specific calls
should be handled under an abstraction layer to enable
a seamless transition to a different OS.

• Hardware: In this case a well placed abstraction layer
will play a key role to ease hardware replacement, hav-
ing a hardware abstraction layer like a fieldbus seems
to be a good strategy to further leverage loose coupling
to a specific piece of hardware

• Databases: Collecting and storing data cannot only be
used for postmortem analysis, but to predict system
degradation and faults, and schedule preventive
maintenance work to avoid these.

• GUIs: A well designed GUI will enhance the opera-
tional efficiency as well as the user experience, nowa-
days technology enables us to develop an excellent hu-
man machine interface.

An important observation from this work is how the con-
trol systems software landscape has changed since 20 years
ago. Back in the early 2000s, a lot of the well established
control environments/frameworks were not flexible
enough to accommodate for the demands of Observatories.
This meant that an “open source” system like EPICS, was

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP06

Software Technology Evolution
MOBPP06

57

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

the better alternative to handle the low level interaction re-
quirements. Therefore, if a required driver was not readily
available, the solution could be developed in house, with-
out the time and overhead costs of going through a vendor.

Fast forward to today, and the increase in the number of
telescopes worldwide has meant that established vendors
see observatories as potential clients. Current automation
and control devices comply perfectly with the performance
and flexibility requirements for telescope control. These
same vendors are tapping into the human know-how of the
past two decades. As a result, control devices, hardware,
firmware and software are being commercially developed
with built-in support suited to Observatories standards.

A trend that can be observed in the newer projects is that
the low-level motion control is outsourced to external ven-
dors, which also usually provide the hardware itself. How-
ever, most of the higher level software is still developed in-
house. This is due to two reasons: requirements that evolve
continuously, and the need for dynamic upgrades and effi-
cient maintenance.

REFERENCES
[1] B. W. Miller and R. Norris, “Gemini queue planning, in

Proc. SPIE, Observatory Operations: Strategies, Processes,
and Systems II, vol. 7016, pp. 260-271, Jul. 2008.
doi:10.1117/12.790169

[2] A. Serio et al., “Gemini Observatory base facility opera-
tions: systems engineering process and lessons learned”, in
Proc. SPIE 9911, Modeling, Systems Engineering, and Pro-
ject Management for Astronomy VI, vol. 9911, pp. 338-355,
Aug. 2016. doi:10.1117/12.2231831: 338 -- 355

[3] Gemini website, http://www.gemini.edu
[4] Experimental Physics and Industrial Control System,

http://www.aps.anl.gov/epics/index.php/
[5] EPICS Channel Access Protocol,

https://epics.anl.gov/docs/CAproto.html
[6] P. M. McGehee; S. Wampler; and K. K. Gillies, “Command

completion within an EPICS database”, in Proc. SPIE Pro-

ceedings, Telescope Control Systems; Jun. 1995, vol. 2479,
pp. 193-203. doi:10.1117/12.211463

[7] K.K. Gillies, “lCD la - The System Command Interface”,
Controls Group, Gemini 8-rn Telescopes Project, Mar.
1995.

[8] K.K. Gillies et al., “lCD lb - The Baseline Attribute/Value
Interface”, Controls Group, Gemini 8-m Telescopes Project,
Feb. 1995.

[9] GTC, http://www.gtc.iac.es
[10] J. M. Filgueira, M. Pi i Puig, P. Gomez-Cambronero,

M. Gonzalez, and R. Penataro. “Architectural design of the
GTC control system”, in Proc. SPIE Advanced Telescope
and Instrumentation Control Software, Munich, Germany,
Mar. 2000, vol. 4009, pp. 35-45.
doi:10.1117/12.388408

[11] M. Huertas, J. Molgo, R. Macías, and F. Ramos. “Monitor-
ing service for the Gran Telescopio Canarias control sys-
tem”, in Proc. SPIE Software and Cyberinfrastructure for
Astronomy IV , Edinburgh, UK, Jun. 2016, vol. 9913, pp.
1319-1327. doi:10.1117/12.2231442

[12] GMT website, https://www.gmto.org
[13] Nanomsg socket library, http://nanomsg.org
[14] EtherCAT fieldbus, https://www.ethercat.org/
[15] M. Pi et al., “Status of the Observatory Control System for

the GMT”, in Proc. SPIE Software and Cyberinfrastructure
for Astronomy V, Jul. 2018, vol. 10707, pp. 18-26.
doi:10.1117/12.2315850

[16] Wind River VxWorks RTOS,
http://www.windriver.com/products/vxworks/

[17] RTEMS RTOS, https://www.rtems.org
[18] A. J. Nunez et al., “Experience upgrading control systems

at the Gemini Telescopes”, in Proc. 16th Int. Conf. on Ac-
celerator and Large Experimental Physics Control Systems
(ICALEPCS'17), Barcelona, Spain, Oct. 2017, pp. 99-106.
doi:10.18429/JACoW-ICALEPCS2017-MODPL03

[19] J. Molgo et al., “Automatization of the guiding process in
the GTC”, in Proc. SPIE Software and Cyberinfrastructure
for Astronomy IV, Edinburgh, UK, Jul. 2016, vol. 9913, pp.
35-46. doi:10.1117/12.2231278

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP06

MOBPP06
58

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

