
DYNAMIC CONTROL SYSTEMS: ADVANTAGES AND CHALLENGES

S. Rubio-Manrique, G. Cuni, ALBA Synchrotron, Cerdanyola del Vallés, Spain

Abstract
The evolution of Software Control Systems

introduced the usage of dynamically typed languages like
Python or Ruby that helped Accelerator scientists to
develop their own control procedures on top of the
standard control system. This new high-level layer of
scientist-developed code is prone to continuous change
and no longer restricted to fixed types and data structures
as low-level control systems used to be. This provides
great advantages for scientists but also big challenges for
the control engineers, that must integrate these dynamic
developments into existing systems like user interfaces,
archiving or alarms.

INTRODUCTION
ALBA [1], member of the TANGO Collaboration [2], is

a third generation synchrotron light source in Barcelona,
Europe. It provides synchrotron light since 2012 to users
in its 8 beamlines, with 4 more in different stages of
construction.

As a core member of the TANGO Control System
Community [3], ALBA controls team has participated in
the development of several tools and libraries shared
across all institutes participating in the collaboration. Our
main areas of development have been experiment control,
GUI toolkits, alarm systems, archiving, simulation and
dynamic user interfaces and device servers.

Control Systems in Modern Accelerators
Within the TANGO Community there are two clear

different trends on developing accelerators control
applications. Some of the institutes (ESRF, SOLEIL,
Elettra, DESY) provide compact and uniform sets of
applications to operators, applications mostly developed
by control engineers. The newer institutes instead
(ALBA, MaxIV, Solaris) have gradually taken a different
path towards dynamically generated applications or user-
developed interfaces on top of frameworks developed and
deployed by the controls engineers [4].

This change has been gradual, as Java-based
frameworks in TANGO already allowed some modularity
and customizing of applications (ATKWidgets, JDraw),
but the key factor has been the widespread usage of
scripting languages (Matlab, Python) by accelerator
scientists to write their own diagnostics and control
software. An example of this practice is the Matlab
Middle Layer [5] framework for accelerators control, that
has become widely spread in the accelerators community,
being used at ALBA to manage the Slow Orbit Feedback
system [6].

Those scripting frameworks became a de-facto parallel
control system and, although providing advantages to
accelerator and beamlines scientists, but soon presented
challenges in performance and unexpected behaviours in

the control system, which required intervention from the
Control team. These effects will be later explored in this
paper, as well as the strategies used to cope with them.

Users as Developers
Despite the strategies that can be adopted from control

and computing teams to keep up with control system
changes, there’s a fact that escapes from control teams
and it’s common for most scientific institutions: operators
and scientists develop code on their own.

This fact has a practical explanation: most scientific
careers include programming background, and the gap
between programming and scientific languages is
becoming smaller. Scientists feel enabled to translate to
code their own ideas, and motivated scientists and long
downtimes or operation shifts often lead to new toolkits
or libraries developed by operators, scientists or users to
enhance their daily work. These new tools often evolve
from simple diagnostic tools to feedback control loops
and GUI applications (Fig. 1), thus becoming at some
point part of the control system. Sometimes it’s a hard
task for the Control engineers to adapt them to the
integration/deployment workflows of the in-house
controls team.

Figure 1: Taurus [4] GUI created by ALBA operators to
manage the insertion/extraction of an infrared mirror.

To mitigate the cost of living with user-developed
applications, three options can be adopted: forbid them to
do it, give them total freedom, or adapt the Control
System to their needs so they can continue developing but
in a safer and more integrated way. Although the first
option is the safest for the integrity of the Control System,
it was not realistic nor acceptable for advanced users, so
we started moving towards the third option, the design
and development of a Dynamic Control System.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP05

MOBPP05
46

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

DYNAMIC CONTROL SYSTEMS
The definition of what is a Control System it’s highly

dependent on the context, as the scope of that definition
may change dramatically when comparing the systems
engineering approach versus the computer science
approach or what is finally understood in our scientific
institutes. A simple definition would be that “a control
system manages, commands, directs, or regulates the
behaviour of other devices or systems”. In a similar way,
an SCADA, term that is also used together with Control
System, would be defined as a “control system
architecture that uses programmable logic controllers,
computers, networks and graphical user interfaces for
high-level process supervisory management”.

As a scientific institution, our main “process” or
activity from the user point of view is to provide the
environment to perform experiments and tools for the
acquisition and processing of data, but also to control
several parallel processes (vacuum, radiofrequency,
motion, cooling, protection, …) that will provide, enable
or interfere directly or indirectly with experiment. But,
experiments are not static processes, users may change
daily (or every few hours), each with its different needs
and targets of study. In the same way, our machines are
subject to continuous upgrade, much more frequent that in
most industry environments and many times subject to
regression due to obsolescence or incompatibilities
between the different elements to integrate.

So, let’s say, that control systems in scientific
institutions tend to be “dynamic” by definition.
Dynamics, understood as “marked by usually continuous
and productive activity or change”, and thus requiring a
continuous update to match experiment needs.

Control Adapted to Change
The first way in which we started adding dynamicity to

our control systems is in the variability of attribute
numbers for a given hardware. How many temperature
readings we will require for a certain beamline? This
number can be specified at design phase, but it will surely
change with time as more diagnostic needs (or more
elements) will appear. Thus, it is a reasonable assumption
to consider that the number of temperatures to acquire
will be variable.

Variability in attributes can be achieved in several
ways: using arrays that vary in size (that may be a
headache for clients or archiving), using by default an
array much bigger than needed (thus a burden “just in
case”) or creating new attributes as they are needed
(which implies some self-discovery or continuous update
on clients).

Auto-generation
The previously described case of “dynamicity” is based

on adding bigger numbers, or copies, of a kind of variable
that already exist in our system.

The most challenging type of dynamicity appears when
completely new elements appear in our system, or even

when an existing element changes its interface, the way in
which system variables are presented to the rest of the
control system. These changes may be motivated for
different reasons:
● A hardware upgrade, when same applications must

manage newer devices that differ from the existing
abstract class (e.g., IOT vs Solid-State RF plants).

● A software upgrade, when the communication
strategy becomes different for a set of devices
(moving from serial line devices to TCP-IP
protocols, moving from a client-polling based system
towards an event-based system).

● New ways to operate, accelerator technologies
evolve, and we the user requires new functionalities
that were not expected in the initial specification (e.g.
new injection modes on a Linac).

One of the key advantages of the TANGO Control

System is that it informs clients of the public and private
interfaces of devices (Attributes, Commands and Property
Lists, as well as its User/Expert level access) as well as of
any change of it (via the InterfaceChange Event). This
type of event may be triggered by devices whenever its
interface changes on runtime, thus while executing the
device control. This feature allows to generate and update
device control panels on runtime (Fig. 2).

Figure 2: Different panels automatically generated for
different types of devices in TANGO.

ADVANTAGES

User Scripts vs Dynamic Control Systems
Accelerator scientists (and physicists in general) had a

long tradition of using mathematics-oriented programm-
ing languages like FORTRAN or MATLAB to develop
their own calculation frameworks for machine designing.
These frameworks have evolved to provide not only
calculations and simulations, but real application in the
development of control loops (as in ALBA’s slow orbit
feedback system, managed using Matlab Middle Layer
framework and the TANGO-Matlab binding). But, the
main disadvantage of these frameworks is that, as an
external client not fully integrated in the Control System,
they may not take into account its effects on the control

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP05

Software Technology Evolution
MOBPP05

47

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

system in terms of cpu and memory usage, overall
performance or long-term stability.

Providing a Dynamic Control System to the users can
be seen as an opportunity to integrate these custom-made
control processes into the standard control system, while
still providing flexibility to scientist to develop their own
code. At ALBA, we have managed to migrate many
operation scripts from Matlab to Python, using our own
Taurus [7] or Fandango [8] API’s on top of PyTango [9].
This enables control engineers to encapsulate how user-
made code is executed, and tune or limit the resources
used by user applications to avoid effects on the
performance of the standard Control System.

Composing and Prototyping on Runtime
This later case occurs when temporary installations or

prototypes are introduced in the machine, and later on
refactored or adapted to the definitive control
infrastructure. As an example, at ALBA it occurred during
the migration an upgrade of our RF Plants to solid-state
amplifiers or new FPGA-based control loops. We had
enabled different diagnostic devices to be editable by
users and accelerator scientists, in a way in which
scientists were able to modify those devices in order to
match their different needs or the variables required by
their mathematical models while also providing controls
services like archiving or alarms.

These devices are divided into Façades, devices that
provide a high-level interface over one or several
hardware-related devices, or Composers, devices that
summarize a large set of elements (like all the Ion Pumps
in a machine sector) as one single element. Both kinds of
devices provide attributes based on formulas (Fig. 3) that
can be edited and updated by scientists on runtime
without the need of a Control Engineer.

The same approach has been used in the development
of simulator devices [10] for testing and prototyping
purposes, as its versatility allows to duplicate almost any
existing device in the Control System.

Figure 3: Declaration of Dynamic Attributes as properties
in the Tango Database.

User-made Interfaces
The TANGO Database provides a repository with all

Devices and Attributes available in the Control System,
and the configuration parameters for its proper
visualization. This centralized repository allows to
develop GUI frameworks with capabilities to explore the

database and allow users to build their own control tools
by methods as simple as drag and drop. At ALBA it is
achieved using the Taurus framework, that provides
simple ways to create customized device panels and
different views depending on user’s context.

These user-made applications do not only provide
direct access to devices data but also to the several
services associated to the Control System. Access to
Archiving [11] and Alarms [12, 13] is granted via python
API’s that allow to manage a complete control system
from a single application [14] (Fig. 4).

Figure 4: Vacuum Control Application, different
perspectives with auto-generated panels.

Providing a framework to users to build their own
applications has reduced the load on Control Engineers,
as small changes in applications can be directly done by
users to adapt to their own needs, including those changes
that vary depending on the current mode of operation.
Thanks to this versatility, only really complex or
performance-demanding applications require now the
involvement of a Controls Engineer. As technology and
scientific demands continue to increase, Control
Engineers workload has not been reduced, but can be
dedicated to most demanding projects.

CHALLENGES

Cost and Consequences of Dynamicity
Continuous change and improvement in our institutes

imply that the controls development team is periodically
working on keeping up with the changes and upgrades in
the installation. The tasks to keep the system up-to-date
will include modifying graphical applications, tuning
services like Archiving and Alarms and updating cabling
databases and any other repositories of hardware
information. New device classes must be integrated in the
existing system, and it may trigger the need to adapt the
existing abstract classes to include features that were not
previously taken into account.

Unbalanced Load
A common solution for coping up with a changing

system is developing applications and services that are
capable of detecting and adding new devices as soon as
they are added to the Control System database.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP05

MOBPP05
48

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

This approach has many advantages and reduces the
time needed to have devices available in applications
when needed. But if the system is not able to scale
properly, performance will be degraded gradually on time.

These effects are easily noticeable in slower
applications, that become more and more bloated as the
number of devices increase, and on services like
Archiving that may get saturated once the number of
inserted Attributes reaches the higher limits. The use of
regular expressions or automated scripts to introduce
elements in the Control System may be dangerous if all
the tools do not take into account the increase in the
service load.

Another kind of effects may appear when dynamically
generated clients start saturating the hardware devices
running below the Control System. The proliferation of
“hidden” services (e.g., Alarms, Archiving, Composers,
Façades) that are permanently accessing the controlled
Devices could start to generate CPU usage problems if the
system is not properly tuned. In the worst case, too many
services accessing a Device will completely block it and
impede any other client to access it.

Ghosts
Performance issues do not only occur when adding new

elements into the system, but also when removing them.
The effect of removing an element without properly
updating databases and clients will immediately trigger
problems in performance, as there’s no worst task that
searching for something that is not there anymore.

These performance issues may include timeouts on
trying to establish connection, or long searches through
the database in the case of not removing properly all the
fields related to a device that is no longer present in the
system.

Uncontrolled Code
Control Teams in most institutions have gradually

adopted several strategies to maintain their code in a
sustainable way. Continuous Integration and testing are
widely spread, and Version Control is a must that no
software team can avoid. But this is not the case of our
software users. Although scientists develop code, they
often do not know about common tools like SVN or Git,
and sometimes even do not have access to the internal
repositories of the institution. The code developed by
Control System users may remain within operators’ home
directories, sometimes without regular backups or a
regular control of changes from the last stable version.

This case is also valid for the code of generated
applications or the formulas introduced in Dynamic
Devices or the Alarm system; which are saved into
databases and may not provide a history of changes if it is
not introduced in the early design of the database
(fortunately, TANGO did it).

The increase of user-developed code in our institution
has gone in parallel to our demands to have better
integration of testing in our development workflow. The
difficulty to locate and verify the user code on each

system upgrade is also a common cause of unexpected
errors on software packages that were completely tested
before delivery; sometimes because design updates or
changes in API that were taken into account in Controls
Team software couldn’t be verified on users’ code.

STRATEGIES TO KEEP UP

Python-based Control Systems
The development of a Dynamic Control System is

enabled and shaped by the programming languages used
on it. The TANGO core is written in C++, but supports an
increasing number of bindings (Labview, Matlab, C,
Python, Java). PyTango, the TANGO Python binding, is a
wrapper developed on top of TANGO C++ Core libraries
that provides all the functionality of TANGO and
introduces multiple advantages on the development
workflow.

Amongst other, some of the main advantages over other
languages like C++ or Java are: dynamically typing (so
more accessible to occasional programmers), most objects
are mutable (can be loaded, modified and executed in
runtime without compiling), and provides many already
existing libraries and frameworks for managing scientific
data (numpy, scipy, pymca, …).

PyTango also offers what is called the TANGO High
Level API, an extremely simplified syntax for developing
both TANGO clients and device servers. This API does
not only reduce the required time to develop a device
server, but also opened the possibility to write control
applications to scientific users with certain programming
background.

Today, most of the Device Servers and all Graphical
User Interfaces (GUIs) at ALBA are developed in Python
[15]. Most of them are not written directly over PyTango
but using one of several python toolkits: Sardana (for
experiment control), Taurus (for User Interfaces) and
Fandango (for functional programming and dynamic
device servers).

Dynamic Device Servers
Dynamic Attributes (variable numbers of attributes

depending on device configuration) are one of the
features that TANGO provides when developing a new
Device Class. In addition, the Fandango library provides a
template for adding new attributes depending on formulas
written and executed on runtime.

These formula-based attributes, used by Composers and
Façades and also in the PANIC Alarm System [16]
devices, are often used to generate statistics, summaries
or conditions depending on the combination of several
Attributes and mathematical expressions. Attributes from
different Devices or systems can be combined to create
new results or states, that become available to all TANGO
services and clients, even higher-level composers that
may use this values to generate the global machine status.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP05

Software Technology Evolution
MOBPP05

49

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Applications Generated Automatically
Applications like PANIC, Taurus Archiving Browser or

EPICS ChannelFinder are good examples of how a simple
regular expression or search can be converted in a fully
functional display of information. Based on the same
approach, User Interfaces can be built automatically to
summarize the information relative to all devices
belonging to a same class (e.g., Power Supplies). This
feature is enabled thanks to the TANGO Database, that
allows to perform queries to extract all Devices matching
a given name filter, class or host location.

This mechanism of auto-generation also allows to
implement fast checks of the status of the system, or to
verify its integrity detecting any change that do not match
with the previously recorded state.

Dynamic Load Balancing
The first versions of Alarm [16] and Archiving [17]

systems at ALBA were tied to specific subsystem
configuration, what we call a dedicated service system.
This approach has been kept for the oldest (and most
critical) parts of the control system. But, for the newest
parts of the control system we have adopted load
balancing strategies.

To do so, we keep the dedicated system but not
specifying directly attribute names, but attribute filters in
the shape of regular expressions. It allowed to split the
archiving of each subsystem in different databases while
not enforcing to know the name of all attributes in
advance.

In parallel, for each of the subsystem databases, the
Archiving configuration API distributes the new attributes
between the available data collectors based on the current
load of each of them. Thus, providing the desired
behaviour without compromising load balancing.

But, this mechanism of load balancing is highly
dependent on enforcing a strict naming convention for the
whole TANGO database. In the same way that we enabled
a dynamic system it must be always accompanied with
restrictions, to ensure that it will be consistent and
maintainable in the medium term.

User Training and Version Control Enforcement
At ALBA, we have done several trainings for scientists

and operators, to ensure that best practices are used and
prevent future issues with code health, thus reducing the
gap between control engineers and scientific users.
Trainings have been done for both operators and scientists
groups, either on python and git best practices or on how
to use tools and libraries properly to not affect the overall
system performance using ALBA version control
repositories.

In the case of already existing or legacy user-code, we
used two different options to track history:
● TANGO database, keeping history of last changes.
● filesystem-based version control, using snapshots

provided by storage supplier, or open alternatives
like gitfs [18].

Control System Profiling, Sandboxing
The dynamic behaviour of the system may cause some

peaks in demand due to the elastic nature of the system,
and the potential capacity of clients to affect devices
performance. Although most institutes already deploy
specific software to monitor memory, cpu and disk usage
in their control hosts; some additional tools may help to
detect and diagnose problems in the Control System.

At ALBA, we use the ProcessProfiler device server to
track the most demanding processes in control hosts,
providing the resulting statistics as TANGO attributes that
can be archived or notified using the standard Archiving
and Alarm systems.

TANGO already provides information regarding
processes running on each host, the polling threads of
each device and the times needed and available to read all
required attributes. Each device also provides a Blackbox
command to enumerate all the clients connected it and the
type of operation requested.

But, as a best strategy to prevent performance
degradation to be spread across the system, we separate
critical and non critical devices in different systems. So,
all protection systems are run by PLCs (static control
system), critical Linux machines run on its own physical
PC hardware and all dynamic devices are executed
instead in dedicated virtual machines, ensuring that its
performance do not affect any critical system managed by
the same Linux host. We also export some control
systems as read-only, using Composer devices as single-
direction gateways. This is used with web applications
(Fig. 5) to ensure that the system cannot be affected in
any way by external client’s performance or demands.

Figure 5: Machine Status Web Application [19], running
on top of Composer devices running on virtual hosts.

In addition, we are migrating gradually our subsystems
from a periodic polling approach towards event-based
communications between devices and clients. Setting
TANGO devices as the master allows to mitigate the
possible effects of clients on hardware devices and
reduces the required CPU usage. But this strategy should
be accompanied with event filtering, as sudden event
bursts that saturate the system.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP05

MOBPP05
50

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

CONCLUSIONS
This paper has explored the characteristics, advantages

and challenges of introducing dynamic or user-
programmed elements in control systems, as well as the
different strategies that are being applied at ALBA to
improve its usage.

The usage of user-tailored systems is going to increase
gradually, becoming very attractive to users. This
motivated that TANGO-managed scientific institutes that
started operation or development in the last 10 years have
adopted Python as its main programming language for
both control and scientific developments.

REFERENCES
[1] ALBA, http://www.albasynchrotron.es

[2] R. Bourtembourg et al., “Tango kernel development
status”, in Proc. 16th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS'17),
Barcelona, Spain, Oct. 2017, pp. 27-33.
doi:10.18429/JACoW-ICALEPCS2017-MOBPL02

[3] TANGO, http://www.tango-controls.org

[4] C. Pascual-Izarra et al., “Effortless creation of control and
data acquisition graphical user interfaces with Taurus”, in
Proc. 15th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS'15),
Melbourne, Australia, Oct. 2015, pp. 1138-1142.
doi:10.18429/JACoW-ICALEPCS2015-THHC3O03

[5] G. J. Portmann, W. J. Corbett, and A. Terebilo, “An
accelerator control middle layer using Matlab”, in Proc.
21st Particle Accelerator Conf. (PAC'05), Knoxville, TN,
USA, May 2005, paper FPAT077, pp. 4009-4011.

[6] J. Marcos and M. Munoz, “Slow orbit feedback and beam
stability at ALBA”, in Proc. 4th Int. Particle Accelerator
Conf. (IPAC'13), Shanghai, China, May 2013, paper
WEPME038, pp. 3010-3012.

[7] Taurus, http://www.taurus-scada.org

[8] Fandango,
https://github.com/tango-controls/fandango

[9] S. Rubio-Manrique et al., “Dynamic attributes and other
functional flexibilities of PyTango”, in Proc. 12th Int.
Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS'09), Kobe, Japan, Oct. 2009,
paper THP079, pp. 824-826.

[10] S. Rubio-Manrique et al., “Reproduce anything, anywhere:
A generic simulation suite for Tango control systems”, in

Proc. 16th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS'17),
Barcelona, Spain, Oct. 2017, pp. 280-284.
doi:10.18429/JACoW-ICALEPCS2017-TUDPL01

[11] L. L. Pivetta et al., “New developments for the HDB++
Tango archiving system”, in Proc. 16th Int. Conf. on
Accelerator and Large Experimental Physics Control
Systems (ICALEPCS'17), Barcelona, Spain, Oct. 2017, pp.
801-805.
doi:10.18429/JACoW-ICALEPCS2017-TUPHA166

[12] S. Rubio-Manrique et al., “Extending Alarm Handling in
Tango”, in Proc. 13th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS'11),
Grenoble, France, Oct. 2011, paper MOMMU001, pp. 63-
65.

[13] S. Rubio-Manrique et al., “PANIC and the evolution of
Tango alarm handlers”, in Proc. 16th Int. Conf. on
Accelerator and Large Experimental Physics Control
Systems (ICALEPCS'17), Barcelona, Spain, Oct. 2017, pp.
170-175.
doi:10.18429/JACoW-ICALEPCS2017-TUBPL03

[14] S. Rubio-Manrique et al., “Unifying all Tango control
services in a customizable graphical user interface”, in
Proc. 15th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS'15),
Melbourne, Australia, Oct. 2015, pp. 1052-1055.
doi:10.18429/JACoW-ICALEPCS2015-WEPGF148

[15] D. Fernandez-Carreiras et al., “Alba, A Tango based
control system in Python”, in Proc. 12th Int. Conf. on
Accelerator and Large Experimental Physics Control
Systems (ICALEPCS'09), Kobe, Japan, Oct. 2009, paper
THP016, pp. 709-711.

[16] PANIC,
https://github.com/tango-controls/panic

[17] S. Rubio-Manrique et al., “Validation of a MySQL-based
Archiving System for ALBA Synchrotron”, in Proc. 12th
Int. Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS'09), Kobe, Japan, Oct. 2009,
paper WEP010, pp. 426-428.

[18] GITFS, https://github.com/presslabs/gitfs

[19] M. Broseta et al., “A web-based report tool for Tango
Control Systems via Websockets”, in Proc. 16th Int. Conf.
on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS'17), Barcelona, Spain, Oct. 2017, pp.
826-829.
doi:10.18429/JACoW-ICALEPCS2017-TUPHA173

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP05

Software Technology Evolution
MOBPP05

51

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

