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Abstract 
The evolution of Software Control Systems 

introduced the usage of dynamically typed languages like 
Python or Ruby that helped Accelerator scientists to 
develop their own control procedures on top of the 
standard control system. This new high-level layer of 
scientist-developed code is prone to continuous change 
and no longer restricted to fixed types and data structures 
as low-level control systems used to be. This provides 
great advantages for scientists but also big challenges for 
the control engineers, that must integrate these dynamic 
developments into existing systems like user interfaces, 
archiving or alarms. 

INTRODUCTION 
ALBA [1], member of the TANGO Collaboration [2], is 

a third generation synchrotron light source in Barcelona, 
Europe. It provides synchrotron light since 2012 to users 
in its 8 beamlines, with 4 more in different stages of 
construction. 

As a core member of the TANGO Control System 
Community [3], ALBA controls team has participated in 
the development of several tools and libraries shared 
across all institutes participating in the collaboration. Our 
main areas of development have been experiment control, 
GUI toolkits, alarm systems, archiving, simulation and 
dynamic user interfaces and device servers. 

Control Systems in Modern Accelerators 
Within the TANGO Community there are two clear 

different trends on developing accelerators control 
applications. Some of the institutes (ESRF, SOLEIL, 
Elettra, DESY) provide compact and uniform sets of 
applications to operators, applications mostly developed 
by control engineers. The newer institutes instead 
(ALBA, MaxIV, Solaris) have gradually taken a different 
path towards dynamically generated applications or user-
developed interfaces on top of frameworks developed and 
deployed by the controls engineers [4]. 

This change has been gradual, as Java-based 
frameworks in TANGO already allowed some modularity 
and customizing of applications (ATKWidgets, JDraw), 
but the key factor has been the widespread usage of 
scripting languages (Matlab, Python) by accelerator 
scientists to write their own diagnostics and control 
software. An example of this practice is the Matlab 
Middle Layer [5] framework for accelerators control, that 
has become widely spread in the accelerators community, 
being used at ALBA to manage the Slow Orbit Feedback 
system [6]. 

Those scripting frameworks became a de-facto parallel 
control system and, although providing advantages to 
accelerator and beamlines scientists, but soon presented 
challenges in performance and unexpected behaviours in 

the control system, which required intervention from the 
Control team. These effects will be later explored in this 
paper, as well as the strategies used to cope with them. 

Users as Developers 
Despite the strategies that can be adopted from control 

and computing teams to keep up with control system 
changes, there’s a fact that escapes from control teams 
and it’s common for most scientific institutions: operators 
and scientists develop code on their own. 

This fact has a practical explanation: most scientific 
careers include programming background, and the gap 
between programming and scientific languages is 
becoming smaller. Scientists feel enabled to translate to 
code their own ideas, and motivated scientists and long 
downtimes or operation shifts often lead to new toolkits 
or libraries developed by operators, scientists or users to 
enhance their daily work. These new tools often evolve 
from simple diagnostic tools to feedback control loops 
and GUI applications (Fig. 1), thus becoming at some 
point part of the control system. Sometimes it’s a hard 
task for the Control engineers to adapt them to the 
integration/deployment workflows of the in-house 
controls team. 

 

Figure 1: Taurus [4] GUI created by ALBA operators to 
manage the insertion/extraction of an infrared mirror. 

To mitigate the cost of living with user-developed 
applications, three options can be adopted: forbid them to 
do it, give them total freedom, or adapt the Control 
System to their needs so they can continue developing but 
in a safer and more integrated way. Although the first 
option is the safest for the integrity of the Control System, 
it was not realistic nor acceptable for advanced users, so 
we started moving towards the third option, the design 
and development of a Dynamic Control System. 
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DYNAMIC CONTROL SYSTEMS 
The definition of what is a Control System it’s highly 

dependent on the context, as the scope of that definition 
may change dramatically when comparing the systems 
engineering approach versus the computer science 
approach or what is finally understood in our scientific 
institutes. A simple definition would be that “a control 
system manages, commands, directs, or regulates the 
behaviour of other devices or systems”. In a similar way, 
an SCADA, term that is also used together with Control 
System, would be defined as a “control system 
architecture that uses programmable logic controllers, 
computers, networks and graphical user interfaces for 
high-level process supervisory management”. 

As a scientific institution, our main “process” or 
activity from the user point of view is to provide the 
environment to perform experiments and tools for the 
acquisition and processing of data, but also to control 
several parallel processes (vacuum, radiofrequency, 
motion, cooling, protection, …) that will provide, enable 
or interfere directly or indirectly with experiment. But, 
experiments are not static processes, users may change 
daily (or every few hours), each with its different needs 
and targets of study. In the same way, our machines are 
subject to continuous upgrade, much more frequent that in 
most industry environments and many times subject to 
regression due to obsolescence or incompatibilities 
between the different elements to integrate. 

So, let’s say, that control systems in scientific 
institutions tend to be “dynamic” by definition. 
Dynamics, understood as “marked by usually continuous 
and productive activity or change”, and thus requiring a 
continuous update to match experiment needs. 

Control Adapted to Change 
The first way in which we started adding dynamicity to 

our control systems is in the variability of attribute 
numbers for a given hardware. How many temperature 
readings we will require for a certain beamline? This 
number can be specified at design phase, but it will surely 
change with time as more diagnostic needs (or more 
elements) will appear. Thus, it is a reasonable assumption 
to consider that the number of temperatures to acquire 
will be variable. 

Variability in attributes can be achieved in several 
ways: using arrays that vary in size (that may be a 
headache for clients or archiving), using by default an 
array much bigger than needed (thus a burden “just in 
case”) or creating new attributes as they are needed 
(which implies some self-discovery or continuous update 
on clients). 

Auto-generation 
The previously described case of “dynamicity” is based 

on adding bigger numbers, or copies, of a kind of variable 
that already exist in our system.  

The most challenging type of dynamicity appears when 
completely new elements appear in our system, or even 

when an existing element changes its interface, the way in 
which system variables are presented to the rest of the 
control system. These changes may be motivated for 
different reasons: 
● A hardware upgrade, when same applications must 

manage newer devices that differ from the existing 
abstract class (e.g., IOT vs Solid-State RF plants). 

● A software upgrade, when the communication 
strategy becomes different for a set of devices 
(moving from serial line devices to TCP-IP 
protocols, moving from a client-polling based system 
towards an event-based system). 

● New ways to operate, accelerator technologies 
evolve, and we the user requires new functionalities 
that were not expected in the initial specification (e.g. 
new injection modes on a Linac). 

 
One of the key advantages of the TANGO Control 

System is that it informs clients of the public and private 
interfaces of devices (Attributes, Commands and Property 
Lists, as well as its User/Expert level access) as well as of 
any change of it (via the InterfaceChange Event). This 
type of event may be triggered by devices whenever its 
interface changes on runtime, thus while executing the 
device control. This feature allows to generate and update 
device control panels on runtime (Fig. 2). 

 

 

Figure 2: Different panels automatically generated for 
different types of devices in TANGO. 

ADVANTAGES 

User Scripts vs Dynamic Control Systems 
Accelerator scientists (and physicists in general) had a 

long tradition of using mathematics-oriented programm-
ing languages like FORTRAN or MATLAB to develop 
their own calculation frameworks for machine designing. 
These frameworks have evolved to provide not only 
calculations and simulations, but real application in the 
development of control loops (as in ALBA’s slow orbit 
feedback system, managed using Matlab Middle Layer 
framework and the TANGO-Matlab binding). But, the 
main disadvantage of these frameworks is that, as an 
external client not fully integrated in the Control System, 
they may not take into account its effects on the control 
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system in terms of cpu and memory usage, overall 
performance or long-term stability. 

Providing a Dynamic Control System to the users can 
be seen as an opportunity to integrate these custom-made 
control processes into the standard control system, while 
still providing flexibility to scientist to develop their own 
code. At ALBA, we have managed to migrate many 
operation scripts from Matlab to Python, using our own 
Taurus [7] or Fandango [8] API’s on top of PyTango [9]. 
This enables control engineers to encapsulate how user-
made code is executed, and tune or limit the resources 
used by user applications to avoid effects on the 
performance of the standard Control System. 

Composing and Prototyping on Runtime 
This later case occurs when temporary installations or 

prototypes are introduced in the machine, and later on 
refactored or adapted to the definitive control 
infrastructure. As an example, at ALBA it occurred during 
the migration an upgrade of our RF Plants to solid-state 
amplifiers or new FPGA-based control loops. We had 
enabled different diagnostic devices to be editable by 
users and accelerator scientists, in a way in which 
scientists were able to modify those devices in order to 
match their different needs or the variables required by 
their mathematical models while also providing controls 
services like archiving or alarms. 

These devices are divided into Façades, devices that 
provide a high-level interface over one or several 
hardware-related devices, or Composers, devices that 
summarize a large set of elements (like all the Ion Pumps 
in a machine sector) as one single element. Both kinds of 
devices provide attributes based on formulas (Fig. 3) that 
can be edited and updated by scientists on runtime 
without the need of a Control Engineer.  

The same approach has been used in the development 
of simulator devices [10] for testing and prototyping 
purposes, as its versatility allows to duplicate almost any 
existing device in the Control System. 

 

 

Figure 3: Declaration of Dynamic Attributes as properties 
in the Tango Database. 

User-made Interfaces 
The TANGO Database provides a repository with all 

Devices and Attributes available in the Control System, 
and the configuration parameters for its proper 
visualization. This centralized repository allows to 
develop GUI frameworks with capabilities to explore the 

database and allow users to build their own control tools 
by methods as simple as drag and drop. At ALBA it is 
achieved using the Taurus framework, that provides 
simple ways to create customized device panels and 
different views depending on user’s context.  

These user-made applications do not only provide 
direct access to devices data but also to the several 
services associated to the Control System. Access to 
Archiving [11] and Alarms [12, 13] is granted via python 
API’s that allow to manage a complete control system 
from a single application [14] (Fig. 4).  

 

 

Figure 4: Vacuum Control Application, different 
perspectives with auto-generated panels. 

Providing a framework to users to build their own 
applications has reduced the load on Control Engineers, 
as small changes in applications can be directly done by 
users to adapt to their own needs, including those changes 
that vary depending on the current mode of operation. 
Thanks to this versatility, only really complex or 
performance-demanding applications require now the 
involvement of a Controls Engineer. As technology and 
scientific demands continue to increase, Control 
Engineers workload has not been reduced, but can be 
dedicated to most demanding projects. 

CHALLENGES 

Cost and Consequences of Dynamicity 
Continuous change and improvement in our institutes 

imply that the controls development team is periodically 
working on keeping up with the changes and upgrades in 
the installation. The tasks to keep the system up-to-date 
will include modifying graphical applications, tuning 
services like Archiving and Alarms and updating cabling 
databases and any other repositories of hardware 
information. New device classes must be integrated in the 
existing system, and it may trigger the need to adapt the 
existing abstract classes to include features that were not 
previously taken into account. 

Unbalanced Load 
A common solution for coping up with a changing 

system is developing applications and services that are 
capable of detecting and adding new devices as soon as 
they are added to the Control System database. 
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This approach has many advantages and reduces the 
time needed to have devices available in applications 
when needed. But if the system is not able to scale 
properly, performance will be degraded gradually on time.  

These effects are easily noticeable in slower 
applications, that become more and more bloated as the 
number of devices increase, and on services like 
Archiving that may get saturated once the number of 
inserted Attributes reaches the higher limits. The use of 
regular expressions or automated scripts to introduce 
elements in the Control System may be dangerous if all 
the tools do not take into account the increase in the 
service load. 

Another kind of effects may appear when dynamically 
generated clients start saturating the hardware devices 
running below the Control System. The proliferation of 
“hidden” services (e.g., Alarms, Archiving, Composers, 
Façades) that are permanently accessing the controlled 
Devices could start to generate CPU usage problems if the 
system is not properly tuned. In the worst case, too many 
services accessing a Device will completely block it and 
impede any other client to access it. 

Ghosts 
Performance issues do not only occur when adding new 

elements into the system, but also when removing them. 
The effect of removing an element without properly 
updating databases and clients will immediately trigger 
problems in performance, as there’s no worst task that 
searching for something that is not there anymore. 

These performance issues may include timeouts on 
trying to establish connection, or long searches through 
the database in the case of not removing properly all the 
fields related to a device that is no longer present in the 
system. 

Uncontrolled Code 
Control Teams in most institutions have gradually 

adopted several strategies to maintain their code in a 
sustainable way. Continuous Integration and testing are 
widely spread, and Version Control is a must that no 
software team can avoid. But this is not the case of our 
software users. Although scientists develop code, they 
often do not know about common tools like SVN or Git, 
and sometimes even do not have access to the internal 
repositories of the institution. The code developed by 
Control System users may remain within operators’ home 
directories, sometimes without regular backups or a 
regular control of changes from the last stable version. 

This case is also valid for the code of generated 
applications or the formulas introduced in Dynamic 
Devices or the Alarm system; which are saved into 
databases and may not provide a history of changes if it is 
not introduced in the early design of the database 
(fortunately, TANGO did it). 

The increase of user-developed code in our institution 
has gone in parallel to our demands to have better 
integration of testing in our development workflow. The 
difficulty to locate and verify the user code on each 

system upgrade is also a common cause of unexpected 
errors on software packages that were completely tested 
before delivery; sometimes because design updates or 
changes in API that were taken into account in Controls 
Team software couldn’t be verified on users’ code. 

STRATEGIES TO KEEP UP 

Python-based Control Systems 
The development of a Dynamic Control System is 

enabled and shaped by the programming languages used 
on it. The TANGO core is written in C++, but supports an 
increasing number of bindings (Labview, Matlab, C, 
Python, Java). PyTango, the TANGO Python binding, is a 
wrapper developed on top of TANGO C++ Core libraries 
that provides all the functionality of TANGO and 
introduces multiple advantages on the development 
workflow. 

Amongst other, some of the main advantages over other 
languages like C++ or Java are: dynamically typing (so 
more accessible to occasional programmers), most objects 
are mutable (can be loaded, modified and executed in 
runtime without compiling), and provides many already 
existing libraries and frameworks for managing scientific 
data (numpy, scipy, pymca, …). 

PyTango also offers what is called the TANGO High 
Level API, an extremely simplified syntax for developing 
both TANGO clients and device servers. This API does 
not only reduce the required time to develop a device 
server, but also opened the possibility to write control 
applications to scientific users with certain programming 
background. 

Today, most of the Device Servers and all Graphical 
User Interfaces (GUIs) at ALBA are developed in Python 
[15]. Most of them are not written directly over PyTango 
but using one of several python toolkits: Sardana (for 
experiment control), Taurus (for User Interfaces) and 
Fandango (for functional programming and dynamic 
device servers). 

Dynamic Device Servers 
Dynamic Attributes (variable numbers of attributes 

depending on device configuration) are one of the 
features that TANGO provides when developing a new 
Device Class. In addition, the Fandango library provides a 
template for adding new attributes depending on formulas 
written and executed on runtime. 

These formula-based attributes, used by Composers and 
Façades and also in the PANIC Alarm System [16] 
devices, are often used to generate statistics, summaries 
or conditions depending on the combination of several 
Attributes and mathematical expressions. Attributes from 
different Devices or systems can be combined to create 
new results or states, that become available to all TANGO 
services and clients, even higher-level composers that 
may use this values to generate the global machine status. 
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Applications Generated Automatically 
Applications like PANIC, Taurus Archiving Browser or 

EPICS ChannelFinder are good examples of how a simple 
regular expression or search can be converted in a fully 
functional display of information. Based on the same 
approach, User Interfaces can be built automatically to 
summarize the information relative to all devices 
belonging to a same class (e.g., Power Supplies). This 
feature is enabled thanks to the TANGO Database, that 
allows to perform queries to extract all Devices matching 
a given name filter, class or host location. 

This mechanism of auto-generation also allows to 
implement fast checks of the status of the system, or to 
verify its integrity detecting any change that do not match 
with the previously recorded state.  

Dynamic Load Balancing 
The first versions of Alarm [16] and Archiving [17] 

systems at ALBA were tied to specific subsystem 
configuration, what we call a dedicated service system. 
This approach has been kept for the oldest (and most 
critical) parts of the control system. But, for the newest 
parts of the control system we have adopted load 
balancing strategies. 

To do so, we keep the dedicated system but not 
specifying directly attribute names, but attribute filters in 
the shape of regular expressions. It allowed to split the 
archiving of each subsystem in different databases while 
not enforcing to know the name of all attributes in 
advance. 

In parallel, for each of the subsystem databases, the 
Archiving configuration API distributes the new attributes 
between the available data collectors based on the current 
load of each of them. Thus, providing the desired 
behaviour without compromising load balancing. 

But, this mechanism of load balancing is highly 
dependent on enforcing a strict naming convention for the 
whole TANGO database. In the same way that we enabled 
a dynamic system it must be always accompanied with 
restrictions, to ensure that it will be consistent and 
maintainable in the medium term. 

User Training and Version Control Enforcement 
At ALBA, we have done several trainings for scientists 

and operators, to ensure that best practices are used and 
prevent future issues with code health, thus reducing the 
gap between control engineers and scientific users. 
Trainings have been done for both operators and scientists 
groups, either on python and git best practices or on how 
to use tools and libraries properly to not affect the overall 
system performance using ALBA version control 
repositories. 

In the case of already existing or legacy user-code, we 
used two different options to track history: 
● TANGO database, keeping history of last changes. 
● filesystem-based version control, using snapshots 

provided by storage supplier, or open alternatives 
like gitfs [18]. 

Control System Profiling, Sandboxing 
The dynamic behaviour of the system may cause some 

peaks in demand due to the elastic nature of the system, 
and the potential capacity of clients to affect devices 
performance. Although most institutes already deploy 
specific software to monitor memory, cpu and disk usage 
in their control hosts; some additional tools may help to 
detect and diagnose problems in the Control System.  

At ALBA, we use the ProcessProfiler device server to 
track the most demanding processes in control hosts, 
providing the resulting statistics as TANGO attributes that 
can be archived or notified using the standard Archiving 
and Alarm systems. 

TANGO already provides information regarding 
processes running on each host, the polling threads of 
each device and the times needed and available to read all 
required attributes. Each device also provides a Blackbox 
command to enumerate all the clients connected it and the 
type of operation requested.  

But, as a best strategy to prevent performance 
degradation to be spread across the system, we separate 
critical and non critical devices in different systems. So, 
all protection systems are run by PLCs (static control 
system), critical Linux machines run on its own physical 
PC hardware and all dynamic devices are executed 
instead in dedicated virtual machines, ensuring that its 
performance do not affect any critical system managed by 
the same Linux host. We also export some control 
systems as read-only, using Composer devices as single-
direction gateways. This is used with web applications 
(Fig. 5) to ensure that the system cannot be affected in 
any way by external client’s performance or demands. 

 

 

Figure 5: Machine Status Web Application [19], running 
on top of Composer devices running on virtual hosts. 

In addition, we are migrating gradually our subsystems 
from a periodic polling approach towards event-based 
communications between devices and clients. Setting 
TANGO devices as the master allows to mitigate the 
possible effects of clients on hardware devices and 
reduces the required CPU usage. But this strategy should 
be accompanied with event filtering, as sudden event 
bursts that saturate the system. 
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CONCLUSIONS 
This paper has explored the characteristics, advantages 

and challenges of introducing dynamic or user-
programmed elements in control systems, as well as the 
different strategies that are being applied at ALBA to 
improve its usage. 

The usage of user-tailored systems is going to increase 
gradually, becoming very attractive to users. This 
motivated that TANGO-managed scientific institutes that 
started operation or development in the last 10 years have 
adopted Python as its main programming language for 
both control and scientific developments. 
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