Author: Yamakawa, K.
Paper Title Page
MOPHA163 The Detector Control System of the Muon Forward Tracker for the ALICE Experiment at LHC 617
 
  • K. Yamakawa
    Hiroshima University, Faculty of Science, Higashi-Hirosima, Japan
 
  ALICE is the LHC experiment specifically devoted to the study of heavy-ion collisions. The Muon Forward Tracker (MFT) is one of the new detectors developed in the framework of the upgrade programs towards the LHC Run 3 starting from 2021. A Detector Control System (DCS) was developed for the MFT within the new framework of the upgraded ALICE central DCS. In this framework, detectors will deliver physics raw data as well as slow control data. The central DCS will be composed of an interface, named Alice Low level FRont-End Device (ALFRED), to convert high-level words within the DCS to low-level words which are sent to the detector FEE as commands. Used Supervisory Control And Data Acquisition (SCADA) is WinCC Open Architecture (OA). In addition, Joint Control Project Framework is installed to provide standard DCS solutions such as a Finite State Machine (FSM) commonly used by the LHC experiments. The FSM, as a base of the DCS hierarchy, was fully developed and successfully tested. A test bench of the MFT DCS was built as a minimal setup of the full DCS chain consisting of WinCC OA, ALFRED, a demonstration board of a DCS chip and a readout board. The latest status will be presented.  
poster icon Poster MOPHA163 [1.106 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA163  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)