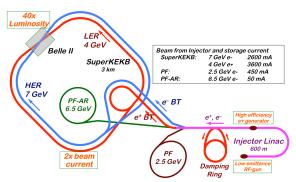
Synchronized Timing and Control System Construction of SuperKEKB Positron Damping Ring

Hitoshi Sugimura, H. Kaji, Y. Ohnishi, K. Furukawa, F. Miyahara, M. Satoh, T. Nakamura, S. Sasaki

KEK

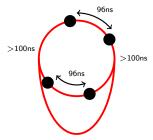
Oct. 12, 2017


1 / 16

- SuperKEKB Project
- Event Timing System
- 3 Event Timing System at DR
- Pre-trigger Timing
- Conclusions

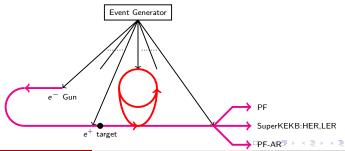
- SuperKEKB Project
- 2 Event Timing System
- 3 Event Timing System at DR
- 4 Pre-trigger Timing
- Conclusions

SuperKEKB Project


- e^+ - e^- collider, B-Factory
- Aim at 40-times higher Luminosity than previous KEKB project $2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}(\text{KEKB}) \rightarrow 8 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}(\text{SuperKEKB})$
- ullet Twice larger storage beam o Higher beam current at Linac
- 20-times higher collision rate with nano-beam scheme

Damping Ring (DR)

- Emittance become down to 1/500 during damping time.
- 40 ms damping while linac operate at 50 Hz
- Accomodate 2-bunches × 2-pulses
- 2-bunches in a pulse are separated by 96.3 ns (10.385 MHz)
- ullet Injection/extraction kickers rise/fall times are ~ 100 ns


Energy	1.1	GeV
Repetition frequency	50	Hz
Length	135.5	m
RF frequency	508.9	MHz
Harmonic Number	230	
Number of bunches	2	
Bunch spacing	96	ns

- SuperKEKB Project
- Event Timing System
- 3 Event Timing System at DR
- 4 Pre-trigger Timing
- Conclusions

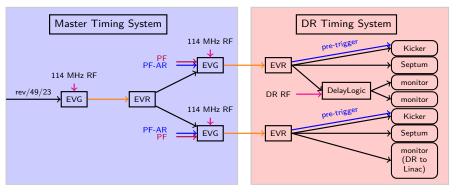
Event Timing System for Simultaneous Top-up Injection

- Fast, global and synchronous controls
 - synchronized with 114 MHz RF clock and 16 bit/clock event/data transfer
- MRF's series Event Generator and Receivers
 - VME-EVG-230 / VME-EVR-230-RF / PXI-EVR-300
- System communicate VME64x and PCIe (VxWorks v6.8 and Windows)
- EPICS R3.14.12 with mrfioc2 (device support)

Injection and extraction timing at DR

- Two timings (injection and extraction at DR) are needed
- Common frequency between 2856 MHz and 508.9 MHz is 10.38 MHz (96 ns, 49 buckets duration)
 - Chance of injection timing turns up once per 96ns (49 buckets).
- Need to consider bucket select combination each DR and MR buckets.
- The number of combination is 5120×23 (least common multiple of DR and MR)

Master Timing System


Master Timing System Upper EVG calculates **EVG** which bucket is consists of 1-upper EVG, 1-upper EVR and 2-lower injected/extracted EVGs in 1-IOC. (bucket selection). **FVR** It delivers dozens kinds of Lower each EVGs timing (BPM, Kicker, delay timing according TTL to bucket-ID. Septum ...). **EVG** LINAC LINAC DR(230Bkt) MR(5120Bkt) 2856 MHz 2856 MHz 508.9 MHz 508.9 MHz

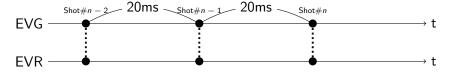
- SuperKEKB Project
- 2 Event Timing System
- 4 Pre-trigger Timing
- Conclusions

Timing Constraints at DR

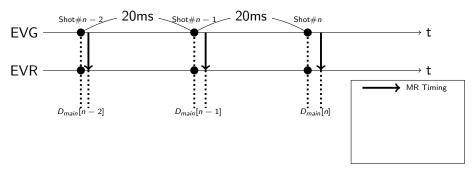
- Kicker Timing
 - Injection/extraction (especially extraction) kicker timing is most important to have effect of beam jitter.
 - \bullet Injection/extraction kicker need charging trigger \sim 15 ms before firing. We call "pre-trigger".
- Pulse trains should be provided for BPM
 - at revolution frequency (508.9 MHz/230)
 - synchronized to one of the beam bunces in DR
- dispersion measurement
 - \bullet 508.9 MHz \pm 50 kHz
 - should be disconnected from other clocks

Event Timing System at DR

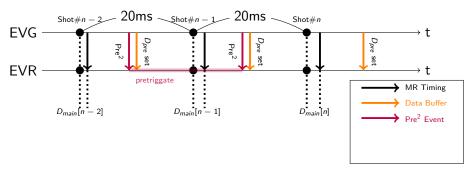
Injection and extraction timing event is sent to each EVRs.

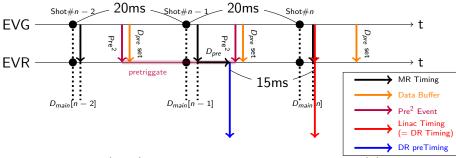

EVR for injection and extraction timing distribute main timing and pre-trigger timing.

The pre-trigger timing is originally generated EVR itself.


For dispersion measurement, valuable delay logic is added.

- SuperKEKB Project
- 2 Event Timing System
- 3 Event Timing System at DR
- Pre-trigger Timing
- 6 Conclusions


Event is sent from EVG to EVR every 20 ms. Suppose to think about DR injection timing at Shot#n.


MR timing is sent after bucket selection delay " D_{main} ". " D_{main} " would change shot by shot due to bucket selection.

Delay time for pre-trigger (D_{pre}) is received by using "Data Buffer" before Shot #n-1. Then, set D_{pre} .

Pre-trigger timing is generated from MR timing. Main trigger timing is generated from Linac timing with no delay.

The delay time (D_{pre}) from MR timing is calculated as eq(1).

$$D_{pre}[n] = D_{main}[n] - D_{main}[n-1] + 5ms$$
 (1)

In this system, timing jitter is measured with 30 ps jitter.

- SuperKEKB Project
- 2 Event Timing System
- 3 Event Timing System at DR
- 4 Pre-trigger Timing
- Conclusions

Summary

- SuperKEKB project aims at 40 times higher luminosity than previous KEKB project
- Operation of damping ring will be started in this FY
- Injector linac, damping ring, EPICS control system, event-based synchronous system are beging constructed
- Pre-trigger system was constructed with 30 ps timing jitter
- Long stablity test will be started soon.

