
1

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

Bringing MX experiments to the web
MXCuBE 3

Page 2

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

Outline

Page 3

● An MX Beamline at glance

● Project background

● Backend, beamline control layer

● Web service layer

● Frontend Development

● Screenshots

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

An MX beamline

Page 4

● Aim is to resolve protein structure

An X-ray beam is focused
on a crystal

The crystal is rotated
and diffraction images
are captured

An electron density map is
calculated from the diffraction images

It’s possible to resolve
the molecular structure
from the electron density
map

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

An MX beamline

MXCuBE is the application used for instrument control and data acquisition

MX-Beamline

● 2D - Detector

● Diffractometer

● Sample changer

● And various other
instruments

○ Monochromator
○ Mirrors
○ Filters
○ Aperture
○ ...

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

Project history and background

Page 6

 MXCuBE 1 in 2005

● MXCuBE is now an international collaboration,
with 8 partner institutes

● Same familiar interface on all sites

● Partners can easily adapt to existing solutions

MXCuBE 2 released in May 2012

Collaboration website: http://mxcube.github.io/mxcube/

http://mxcube.github.io/mxcube/

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

MXCuBE 3 Background

Page 7

New software needed, decision made to implement
MXCuBE as a Web Application

○ Better remote access performance

○ Keeping up with new instrument capabilities

○ Improved user experience

○ Easing the maintenance and client install

UI gets less user friendly
as new functionality is
added

At the same time
software industry also
evolves

New requirements on
software as new
instruments are
introduced

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

MXCuBE 3 - Roadmap

Page 8

● MXCuBE 3 Development started by ESRF and MAXIV in September 2015

● MXCuBE 3.0 to be released in early November 2017

○ Pre release already in use at MAXIV since June 2016

○ Preliminary user feedback is very positive (Poster presentation by Mikel Eguiraun
TUMPL08 this afternoon)

● Version 3.1 scheduled for second quarter 2018

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

MXCuBE 3

Page 9

REST webservices Asynchronous message broker
SocketIO

Thin utility layer for accessing
Hardware Repository

Beamline control layer
Hardware and procedure abstraction

(Hardware Objects)

Client (Browser)

WSGI Container
(Flask Webserver)

■ Built on top of the same beamline control layer as MXCuBE 2 (Hardware Objects)

■ Instruments and procedures are implemented as what is called Hardware Objects

■ The beamline control layer is control system agnostic and supports for instance
SPEC, EPICS, Sardana, BLISS and TANGO, (BLISS Talk by Matias Guijarro, WEBPL05)

■ Base classes define a common API for a particular instrument or procedure, which
facilitates cross site adaption

Web service layer

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

Web Service Layer

Page 10

REST webservices Asynchronous message broker
SocketIO

Thin utility layer for accessing
Hardware Repository

Beamline control layer
Hardware and procedure abstraction

(Hardware Objects)

Client (Browser)

Web service layer

WSGI Container
(Flask Webserver)

● Defines an API for clients to access the HardwareObjects, and relays events
between Hardware Objects and clients (not necessarily a browsers)

● Thin utility layer for providing new functionality exclusive to MXCuBE 3 and
ease access to Hardware Objects

● Websockets, via SocketIO, used to relay events from backend

● Implemented on top of a Flask web server, WSGI container

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

Frontend development - Babel and Webpack

Page 11

● Application written in HTML 5, Javascript 6 (JS6) and CSS

● JS6 gives us the possibility to use reusable components and modules

● Problem, no browser have full JS6 support

ES6 Code is “transpiled” with babel to ES5 which have good support in most browsers

Webpack is used to bundle the various assets, JS, CSS, LESS, Fonts and images to a set of static
files that can be loaded by the browser.

Babel and webpack allows us to use reusable modules and classes
(https://babeljs.io/) and (https://webpack.github.io/)

https://babeljs.io/
https://webpack.github.io/

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

COMPONENTS

Frontend development - React and Redux

Page 12

● React is a library for creating user interfaces

● React makes it possible to use widgets like in
traditional UI development

● Provides a way to express the UI in a markup
language called JSX

● Can be used with state management library, in
order to avoid per widget state

https://facebook.github.io/react/

http://redux.js.org/

● Application wide state, only source of data for
components.

● The redux store is an immutable data structure
and can only be updated (replaced) by a pure
function, a reducer

● The reducer function is called by dispatching an
action for instance when user interacts with UI

● Provides unidirectional data flow, easy to debug

REDUCER
f(action, state) State

UI

COMPONENTS

UI notified on
 state change

components
dispatches

actions

https://facebook.github.io/react/
http://redux.js.org/

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

Screenshots - Data Collection

Page 13

Data collection view, for interactive data collection and sample alignment

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

Screenshots - Sample overview

Page 14

Sample overview, samples represented as cards. Gives the possibility to apply data collections
over a set of samples and run them in a automatic sequence

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

Questions ?

Page 15

Thanks to everybody involved in the project, especially staff from MAX IV and ESRF
(Picture from last MXCuBE ISPyB meeting at Soleil)

