
THE ELT LINUX 

DEVELOPMENT 

ENVIRONMENT

F.Pellegrin, C.Rosenquist

European Southern Observatory

https://www.eso.org



ICALEPCS 2017, Barcelona 2

The ELT

Extremely Large Telescope

• 39m ground-based 

• Cerro Armazones

• First stone May 2017

• First light expected 2024

• Largest optical/near-IR

• Exoplanets, star 

formations, protoplanetary 

systems

• Five-mirror design

• M1: 798 segments 1.4 meters wide 5cm thick (3 PACT, 6 ES, 12 WH)

• Figure loop at 500Hz ~ 1Gbit/s traffic

• M4: 4 meters (~6000 actuators)

• Alt-azimuth mount with 6 LGS



ICALEPCS 2017, Barcelona 3

Components of very different scope:

➢Real-time performance

➢High level data handling and post-processing

Long time project (> 30 years)

➢Maintenance

Different developer base:

➢ In-house / external

➢Engineers / scientists 

Software challenges



ICALEPCS 2017, Barcelona 4

DevEnv Overview

CentOS
C/C++

gcc (Clang)

cpplint

Cppcheck

Googletest

gcov

Python

Anaconda

pylint

unittest

nosetests

Java

OpenJDK

Checkstyle

findbugs

TestNG / Mockito

Qt5

Eclipse

waf

Protobuffers

DDS

ZeroMQ

OPCUA

…

Doxygen

Gdb, strace, valgrind,

Systemtap, htop, tuned



ICALEPCS 2017, Barcelona 5

Single build system for C++ / Python /Java

➢Reliable partial builds

➢Full parallelization

➢Requires less specific knowledge

Automatic dependency management

Efficient and parallel

Off-tree builds

Ease of integration with new tools

Logging and debugging support

Build system challenges



ICALEPCS 2017, Barcelona 6

Open source project started in 2005

Entirely Python based (2.5 -> 3.6)

Focus on:

➢Portability

➢Speed of execution

Efficiency on condition of rebuilds

Supports many languages and tools; expandable 

Users: Samba, RTEMS, Ardour, game companies

waf



ICALEPCS 2017, Barcelona 7

wscript: build scripts defining configuration, options 

and build steps

➢Python code

➢ Interaction with the waf framework

Command line execution of phases

➢configure

➢build

➢ test

➢ install / dist

➢Custom commands

waf



ICALEPCS 2017, Barcelona 8

def options(opt):

opt.load('compiler_cxx python pyqt5 ')

def configure(conf):

conf.load('compiler_cxx python pyqt5 ’) 

conf.check(header_name='stdio.h', features='cxx’) 

conf.check_python_version((3,5,0))

def build(bld):

bld.shlib(source='a.cpp inc/a.h', target='alib’, export_includes=‘inc’) 

bld.program(source='m.cpp', target='app', use='alib’) 

bld.stlib(source='b.cpp', target='foo’) 

bld(features="py pyqt5", source="src/test.py src/gui.ui",

install_path="${PREFIX}/play/", install_from="src/")

waf: an example



ICALEPCS 2017, Barcelona 9

wscripts are readable and easy but still…

wtools as a layer for:

➢Simplification for common tasks for users

➢Centralized maintenance and roll-out of new features

➢Easier to enforce certain practices

Can reduce script to a single line:

from wtools.module import declare_cprogram 

declare_cprogram(target=”foo”, use=”bar”) 

Tasks for primary artifacts and additional ones are 

created: tests, installation, linting …

wtools



ICALEPCS 2017, Barcelona 10

Based on set on conventions:

➢Directory structure, file positioning, file naming

Currently supporting:

➢C/C++ program, shared and static library, 

➢Python program and package, 

➢Qt5 C++ or Python program

➢Java JAR packages. 

Custom modules that leverage full waf can be 

created for specific needs not included in wtools

wtools



ICALEPCS 2017, Barcelona 11

Early adoption with feedbacks

➢ Implementation of new requests is easier

➢Very efficient resource-wise

We need to help users to adapt to this new 

technology and maintain it actively to meet 

expectations

What else we are looking at:

➢Containerization (Docker and LXC)

➢Deployment of applications

Future challenges


