
presented at ICALEPCS2017

Optimized Calculation of Timing for Parallel Beam Operation
at the FAIR Accelerator Complex

A. Schaller, J. Fitzek - GSI, Darmstadt, Germany

Prof. Dr. F. Wolf, Dr. D. Lorenz - TU Darmstadt, Germany

Abstract

For the new FAIR accelerator complex at GSI the settings management
system LSA is used. It is developed in collaboration with CERN and
until now it is executed strictly serial. Nowadays the performance
gain of single core processors have nearly stagnated and multicore
processors dominate the market. This evolution forces software
projects to make use of the parallel hardware to increase their
performance. In this thesis LSA is analyzed and parallelized using
different parallelization patterns like task and loop parallelization. The
most common case of user interaction is to change specific settings
so that the accelerator performs at its best. For each changed setting,
LSA needs to calculate all child settings of the parameter hierarchy.
To maximize the speedup of the calculations, they are also optimized
sequentially. The used data structures and algorithms are reviewed
to ensure minimal resource usage and maximal compatibility with
parallel execution. The overall goal of this thesis is to speed up the
calculations so that the results can be shown in an user interface with
nearly no noticeable latency.

Motivation

To allow the commissioning and operation of FAIR, the software
used today has to be optimized. The Cryring (YR), with its local
injector, acts as a test facility for the new control system and in
special for the control systems central component, the settings
management system LSA. For the last YR commissioning beam
time, about 3 700 manual trims were calculated per week with
80 working hours, which is about one trim every 77 seconds.
Since the YR is a very small accelerator ring, with a circumference
of approximate 54 m, everything worked fine. The waiting time
summarizes to about 19 minutes, however, the human reaction
time is not much less. But when it comes to calculate the Heavy
Ion Synchrotron 18 (SIS18) or SIS100, the calculations get very
slow. To calculate 3 700 trims for the SIS18, with its approximate
216 m, an operator would have to wait for over 13 hours. The
SIS100, with approximate 1 100 m, calculation would even take
over 91 hours.

Speedup

The speedup represents a factor, that shows how two different
algorithms perform on the same task. In the context of
parallelization, the speedup is a factor that indicates how much
the parallel algorithm is faster than the sequential one. It is given
by

S(P ) = T (1)

T (P )
(1)

where T (n) is the total execution time on a system with n
processing units.
T (1) is also representable as

T (1) = Tsetup +Tcompute +T f i nal i ze (2)

Since the only part that can benefit from parallel optimization is
Tcompute, T (n) can be written as

T (n) = Tsetup +
Tcompute(1)

n
+T f i nal i ze (3)

The efficiency can be expressed as

E(P ) = S(P )

P
(4)

where
E = Efficiency
P = Number of Processing Units
S = Speedup
T = Time

Work Depth Model

The Work Depth Model, described by Blelloch, allows to compare
the execution time of parallel algorithms. Especially when using
trees for parallelization, like the parameter hierarchy in LSA,
other comparison mechanism don’t fit to the problem. In the
context of parallelizing LSA, the work W is expressed by the
amount of settings to be calculated and the depth D is expressed
by the depth of the parameter hierarchy. Using Equation 5 of
Blelloch, a range for time T can be calculated for a given number
of processing units P where time T depends on the hardware.

W

P
≤ T < W

P
+D (5)

With respect to Equation 1 we can say that the speedup in the
Work Depth Model is

W P

W +PD
≤ S(P ) < P (6)

Test Scenarios

The following figures visualize the two patterns used for testing

Pattern 1
• Including one Chain
• Changed one high-level

parameter in
– SIS18 (P1-1)

Pattern 2
• Including three Chains
• Changed one high-level

parameter in
– SIS100 (P2-1)
– SIS18 (P2-2)
– SIS18 and SIS100

(P2-3)

Overview of the test scenarios

Nr. of Nr. of
changed calculated average

Nr. of high level dependent original
Scenario Settings Settings Settings time

P1-1 14 538 1 8 707 12.7 s
P2-1 38 943 1 11 184 132.9 s
P2-2 38 943 1 8 466 18.1 s
P2-3 38 943 2 19 650 155.2 s

Optimizations

Sequential

• use caching where possible
• use suitable data structures for the main use case
• reduce array copies when inserting (or deleting) multiple

points to a function
• change algorithms with complexity O(n2) to those with

O(n logn) where possible
• don’t calculate a setting for all its parents but only once all

its parents have been calculated

Parallel

• run static data preparation in parallel
• run calculation loops in parallel where possible
• use parameter hierarchy as a task graph

Optimization Results

Average execution times on the target platform (10 cores with
HT, 64 GB RAM) where each scenario was run twice for warmup
and five times for measurements. The parallel execution was
measured with the default threadpool size of 19 plus the main
thread.

no serial serial + parallel
0.25

0.5
1
2
4
8

16
32
64

128
256

optimization

se
co

n
d

s

P1-1
P2-1
P2-2
P2-3

Work Depth Model: Equation 6 for W = 3728 (changed settings
in SIS100) and D = 20 (depth of parameter hierarchy for SIS100).

3.95

9.97

2 4 8 16 32 64 128 256 512
1

2

4

8

16

32

64

128

256

512

10
Number of processing units

Sp
ee

d
u

p

Work Depth
range of Speedup

Speedups
4 cores with HT
10 cores with HT

Work Depth Model for

• 4 cores: speedup is between 3.92 and 4.00
measured speedup is 3.95

• 10 cores: speedup is between 9.49 and 10.00
measured speedup is 9.97

The parallel speedup on the target platform with 10 cores has
an efficiency E of 0.997, on the test platform with 4 cores the
efficiency is 0.987 (see Equation 4), which nearly is a so called
perfect linear speedup where E = 1.

The following image shows the memory consumption on the
target platform for scenario P2-3. The scenario was run twice
for warmup and five times for the measurements.

no optimizations vs.
serial + parallel
optimizations

0 GB

2 GB

4 GB

6 GB

738.6 s vs. 8.7 s
305 garbage collections vs. 5 garbage collections

1 353.4 GB total
memory allocation

vs.
18.9 GB total

memory allocation

Overview of the needed resources for P2-3
sequential

optimization none sequential & parallel
trim time 95.6 s 5.4 s 0.7 s

CPU usage avg 6.2 % 9.1 % 62.8 %
CPU usage max 19.9 % 11.1 % 62.8 %

Heap avg 2.5 GB 1.8 GB 2.0 GB
Heap max 5.4 GB 3.4 GB 3.8 GB

GC pause time avg 11.4 ms 29.7 ms 33.8 ms
GC pause time max 70.5 ms 29.7 ms 33.8 ms
Main thread usage 100 % 100 % 8.5 %

Thread pool usage total 0 % 0 % 91.5 %
Thread pool usage avg 0 % 0 % 4.8 %

TLAB size total 147.5 GB 6.4 GB 4.0 GB
TLAB size avg 64.1 MB 56.8 MB 3.6 MB

TLAB size max 105.7 MB 75.0 MB 72.8 MB
Alloc. rate for TLAB 1 495.0 MB/s 731.3 MB/s 672.0 MB/s

Object size total 114.3 kB 10.4 kB 5.0 kB
Object size avg 1.0 kB 10.4 kB 0.8 kB

Object size max 32.0 kB 10.4 kB 2.1 kB
Alloc. rate for Objects 1.1 kB/s 1.1 kB/s 0.8 kB/s

For this chart, each scenario was executed 2 times for warmup
and 5 times for measurements on a test platform (4 cores, 12 GB
RAM) wth and without Hyper Threading Technology (HT). The
default threadpool size is n −1, so for the setup without HT, the
default threadpool size is 3 and with HT the default threadpool
size is 7.

3 4 7 8 12 16 20

16

18

20

22

24

26

28

30

threadpool size

se
co

n
d

s

without HT
with HT

Summary

By reducing the memory consumption and complexity of
the most used algorithms of LSA from O(n2) to O(n logn)
the sequential calculation time could be sped up by 22.00.
Parallelizing the DAG containing the parameter hierarchy and
some loops in the trim calculations increased the speedup by
a factor of 9.97 on the target platform with 10 cores with hyper
threading. This leads to an average speedup of 219.23 which
now allows the user to seamlessly change the overall accelerator
scheduling.


	Abstract
	Motivation
	Speedup
	Work Depth Model

	Test Scenarios
	Optimizations
	Sequential
	Parallel

	Optimization Results
	Summary

