
Parallel Execution of Sequential 
Data Analysis

Abstract Node Structure
Data manager
Data manager is a QtTree with a list of names representing the data 
related to each spectrum. The list can be divided in different groups, 
where is possible to drag and drop the names between the groups. A 
right click opens a context menu with options to interact with the data. 
The selected names determine the active data, that will be considered 
to apply transforms or options from the context menu: add, remove, 
create group, set a colormap, set line properties (see Fig. 2), average. 
The widget also serves as a legend. For each node there are one or 
more columns representing the curves on the plot. Each legend entry 
has a control element for attributing it to left or right Y axis or for 
switching it off. There is also a button to control all the curves of the 
group. Regarding the functionality as legend, each button has the color 
and the line from the curve. Through the context menu the user can 
change these characteristics. Furthermore, when more than one curve 
are selected, the user can apply a colormap to change their colors 
following the colormap gradient, as shown in Fig. 3.

Figure 1: ParSeq Main Window

Figure 2: Example of colormap with temperature gradient

J. F. J. Murari*, K. Klementiev
MAX IV Laboratory, Lund, Sweden

* Contact: juliano.murari@maxiv.lu.se

References

ParSeq has a main window composed of transformation nodes. Each node has a separated tab and defines which stage of the pipeline 
the user is working on. The nodes have a common group of components that will be detailed in next section. Figure 1 shows an 
overview of the main window. ParSeq can be operated both via GUI or via scripts, where the user can define programmatically what is 
the data processing pipeline wanted and what are the parameters for each transform and for each spectrum. Processing pipelines are 
Python modules imported by GUI or scripts and are predefined for any analysis technique and therefore are (a) ready to use and (b) 
extensible if required. The currently implemented pipeline is only one: for X-ray Absorption Spectroscopy.

Dockable Widgets

The node widgets are dockable and can 
be placed wherever the user prefers, 
giving the flexibility to the user to decide 
where to position the windows or to have 
them grouped in tabs. ParSeq saves the 
current perspective in order to be able to 
restore it next time the program is 
opened again.

Undo Redo Actions

ParSeq has implemented undo and redo 
options related to the transform 
operations. These options allow the user 
to revert one transform that was 
occasionally done wrong. If one action is 
reverted (undo) it will then be available to 
be reapplied (redo).

Splitter bars

Corner widgets of ParSeq are divided by 
splitter bars that can be resized by the 
user. Furthermore, the splitters have a 
button to collapse/expand the corner 
widget. This way, the user can hide the 
sub-windows that are not in use at the 
moment.

Planned for a later development stage, the 
most expensive transforms will be computed 
in parallel on GPUs or multi-core CPUs. The 
programming will be done in OpenCL [3]. 
The connection to ParSeq will be done in 
Python by means of PyOpenCL. The early 
implementation of the transforms will be 
done solely with numpy.

Data combiner
The data combiner creates a linear combination (average or RMS) or 
several linear combinations (for Principal Component Analysis) and 
optionally can stop the propagation of the contributing data at some 
downstream node in favor of the combined data. This feature is useful, 
for example, for averaging multi-element detector data when the 
quality of the individual data can be visualized and assessed not 
immediately but a few transforms downstream of the present node.

Metadata viewer
Metadata viewer widget has the function to show what are the 
metadata related to the selected curves. I more than one curve are 
selected it shows only the metadata common between them.

Transform Dialog
The transform dialog widget is where the parameters options are 
available. At this point each node has a specific set of parameters. Each 
spectrum has, in general, its individual values for these parameters. 
The result of the transform appears in the next node.

Help Panel
Help panel widget is a space to present help text with instructions and 
information about the current node and the associated transform. It 
shows a rich text from html file.

Plot Window
Plot window widget from silx is the central and most important 
element of the GUI. It is the widget that indeed shows spectra, usually 
as XY graph. The advantage to use the silx plot window is to have a lot 
of functionalities already implemented, as for example, zooming, 
regions of interest (ROI), grid, log scale. Library silx provides an OpenGL 
backend which is faster than matplotlib backend, mainly working with 
1D curves.

ParSeq is a project under development and we are continously working on it. For the future we plan, besides the GPU processing, to 
improve the handling of data files, and to increase the number of formats supported (HDF, for example). We are also working on the 
implementation and integration of the transforms that will be available. In the future ParSeq can be also very useful to run integrated 
with the beamline control system for on-the-fly quality checking.

Figure 3: Line Properties Dialog

The Parallel Execution of Sequential Data Analysis (ParSeq) software has been developed to work on large data sets of 
thousands spectra of a thousand points each. The main goal of this tool is to perform spectroscopy analysis without delays 
on the large amount of data that will be generated on Balder beamline at Max IV [1]. ParSeq was developed using Python 
and PyQt and can be operated via scripts or graphical user interface (GUI). The pipeline is consisted of nodes and 
transforms. Each node generally has a common group of components: data manager (also serves as legend), data 
combiner, metadata viewer, transform dialog, help panel and a plot window (from silx library [2]) as main element. 
Calculations will be done with parallel execution on GPU. The GUI is very flexible and user-friendly, containing splitters, 
dock widgets, colormaps and undo/redo options.

Main Window

GPU Processing

Future Work
[1] K Klementiev, et al. The Balder Beamline at the MAX IV 
Laboratory. Journal of Physics: Conference Series, 
712(1):012023, 2016.
[2] Solé, V. A., et al., “silx-kit: Scientific Library for eXperimentalists”, 
Release 0.5.0 - 2017/05/12. http://www.silx.org/
[3] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel 
programming standard for heterogeneous computing systems. IEEE 
Des. Test, 12(3):66–73, May 2010.


	Slide 1

