
Technical Secretariat Salvador Espriu, 77, Local 10
08005 Barcelona – Spain
Ph. +34 932 212 955
icalepcs2017@mondial-congress.com

LOCAL ORGANIZING COMMITTEE
Conference Chair David Fernández. ALBA-CELLS
Program Chair Óscar Matilla. ALBA-CELLS
Industry Guifré Cuní. ALBA-CELLS
Secretariat Concepció Girbau. ALBA-CELLS
Editorial Team Coordinator Isidre Costa. ALBA-CELLS

ENDORSED BY

ORGANIZER

16th International Conference on
Accelerator and Large Experimental
Physics Control Systems

KEY DATES 2017
February 1 Abstract Submission begins

April 18 Online Registration begins
April 30 Abstract Submission ends
July 20 Deadline for Early Registration

October 4 Deadline for Paper Submissions
October 7-8 Satellite Workshops

October 8 Registration and Reception
October 9 The Conference starts

October 13 The Conference ends

TRACKS
Experiment control
Functional safety & machine protection
Software technology evolution
User Interfaces & User Experience (UX)
Project status reports
Control system upgrades
Data management & processing
Integrating diverse systems
IT infrastructure for control systems
Feedback control & process tuning
Hardware technology
Timing & synchronization
Systems engineering, collaborations & project management
Data analytics

ICALEPCS2017
Barcelona · Spain, October 8-13
Palau de Congressos de Catalunya
www.icalepcs2017.org

StreamingPool - ManagingLong-LivingReactive
Streams forJava

A. Calia, K. Fuchsberger, M. Gabriel, M.-A. Galilée, J.-C. Garnier, G.-H. Hemelsoet,
M. Hostettler, M. Hruska, D. Jacquet, J. Makai, T. Martins Ribeiro, A. Stanisz

(CERN, Geneva, Switzerland)

Key Concepts
Typed Stream Discovery Pool of Shared Streams Lazy Stream Creation Error Deflection

Reusable GUI ComponentsArchitecture
The goal of the Streamingpool API is to provide an
abstraction over the management of reactive streams in a
software application. It provides mechanisms to discover,
provide and create reactive streams. It focuses on sharing
the streams and creating long-living data flows for online
analysis or any business logic.
The key components in this mechanism are:

• StreamId: It uniquely identifies a reactive stream
in the Streamingpool in a typesafe way.

• DiscoveryService: Through this interface a stream
can be looked up (’discovered’).

• StreamingPool: This is the central component,
which manages the available streams. Whenever
the user discovers a StreamId, the Streamingpool
checks if it already has the corresponding reactive
stream in the pool of streams, reusing the existing
ones. If this is not the case, the creation (material-
ization) is performed and a reactive stream is cre-
ated from the information carried by the StreamId.

• StreamFactory: Through this extension point, users
of the library can describe how streams for certain
stream ids will be created.

Architectural Overview:

Error Handling
Errors are handled gracefully (i.e. without collapsing any
streams). This requires that the involved stream factories
are implemented such that they deflect the errors onto a
dedicated error stream:
Whenever a stream factory creates a StreamId it returns
an ErrorStreamPair of a Publisher<T> for the data and the
corresponding Publisher<Throwable> for any errors that
may occur.
Both the data and the error streams are then registered in
the Streamingpool for future lookups. The error stream
for any StreamId can be looked up by resolving the asso-
ciated ErrorStreamId (Listing 1).

Listing 1: Usage of an ErrorStreamId for discovering error
streams.

DiscoveryService discoveryService = ... ;
DeviceStreamId deviceId = DeviceStreamId.

fromName("LHC.TUNE.BEAM1");
ErrorStreamId deviceErrorsId = ErrorStreamId

.of(deviceId);

Publisher <DeviceData > dataStream =
discoveryService.discover(deviceId);

Publisher <Throwable > errorStream =
discoveryService.discover(
deviceErrorsId);

It is also possible to subscribe for the error streams of all
streams created by the pool. This is useful e.g. to create
a dashboard showing all exceptions that have recently
occurred and allows monitoring the health status of the
application or system in question.

Applications
• Mainly developed along a new LHC injection

diagnostics [6] application. Here it is used to-
gether with the tensorics library [7, 8] to provide
a reusable analysis framework [9].

• Control room applications: e.g. displays the re-
maining time for LHC injection kicker soft-start
or the graphical user interfaces that control chro-
maticity [10] and coupling [11] of the LHC.

Testing
Streamingpool is designed with unit testing in mind.
The fact that the DiscoveryService does not materialize a
stream if already present in the Streamingpool makes it
easy to provide dedicated streams for testing.
Through this mechanism, the logic under test can be
isolated even in complex applications that use different
layers of streams; a portion of a chain of processing
can be isolated by providing the mocked input streams
through the ProvidingService.

Stream Discovery
The mechanism that allows a user to get streams from the
Streamingpool is called DiscoveryService. When initial-
izing the Streamingpool using Spring, a DiscoveryService
bean becomes available for injection.
The API of the DiscoveryService consists of a sin-
gle method: discover(StreamId<T> id) which returns a
Publisher<T>.
Usually, in the Streamingpool streams are created lazily,
at discovery time. Practically, it means that when the user
discovers a StreamId, the Streamingpool triggers its cre-
ation if it is not present in the system. Therefore, a call to
the method DiscoveryService.discover(...) is blocking.

Listing 2 shows an example of the discovery of a StreamId
and a subscription to it using RxJava.

Listing 2: Discover and consume a StreamId.

DiscoveryService discoveryService = ...;
AnyStreamId streamId = new AnyStreamId();

Publisher <Any> stream =
discoveryService.discover(streamId);

Flowable.fromPublisher(stream)
.subscribe(System.out::println);

Stream Ids
In order to identify a stream, Streamingpool uses the
concept of StreamId.
The fact that a StreamId identifies a specific stream,
means it can carry information and it can be
parametrized. For example, for accessing the hard-
ware publication of a device, one could create a
DeviceStreamId<T> and then parametrize it with the de-
vice identifier, Listing 3:

Listing 3: Usage of an hypothetical DeviceStreamId class.

DeviceStreamId streamId =
DeviceStreamId.ofDevice("LHC.TUNE.BEAM1");

Future Developments
It is clear that the current state of Streamingpool is only
a first step and further effort has to go into several direc-
tions:

• Network streams: From the early days this step
was foreseen. At that time, the reactive streams
technology was still quite young, so it was decided
to postpone the choice of technology for this and
focus on the functionality described in the above
sections. Meanwhile, the technology evolved and
several options are available. For example, the
Spring project included reactive controllers in their
version 5.0. Using gRPC [12] as network layer is
another option.

• More diagnostics and debugging functionali-
ties: Due to the standardized approach in Stream-
ingpool, generic components (e.g. graphical user
interfaces) can be built which e.g. can show the
relations between the streams or the time struc-
ture of the related items. One example of such a
generic GUI component which already exists, is
a JavaFx panel that shows the exceptions of all
error streams provided by a pool, which can be
included in any application using Streamingpool
as a backend.

References
[1] https://github.com/streamingpool

[2] http://www.reactive-streams.org/

[3] https://projectreactor.io/

[4] https://github.com/ReactiveX/RxJava

[5] A. Calia, K. Fuchsberger, M. Hostettler, “Testing the untestable: A
realistic vision of fearless testing (almost) every single accelerator
component without beam and continuous deployment thereof”,
IBIC16, Barcelona, Spain (2016).

[6] K. Fuchsberger et al., “Development of a new system for detailed
LHC filling diagnostics and statistics”, IPAC17, Copenhagen,
Denmark (2017).

[7] K. Fuchsberger et al., “Tensorics - a Java Library for Manipu-
lating Multi-Dimensional Data With Pleasure”, ICALEPCS17,
Barcelona, Spain (2017).

[8] https://github.com/tensorics

[9] K. Fuchsberger et al., “A Framework for Online Analysis Based
on Tensorics Expressions and Streaming Pool”, ICALEPCS17,
Barcelona, Spain (2017).

[10] K. Fuchsberger, G. H. Hemelsoet, “LHC Online Chromatic-
ity Measurement - Experience After One Year of Operation”,
IBIC2016, Barcelona, Spain (2016).

[11] G.H. Hemelsoet et al., “Online coupling measurement and cor-
rection throughout the LHC Cycle”, ICALEPCS17, Barcelona,
Spain (2017).

[12] https://grpc.io

