
We would like to thank Heiner Billich for the 
possibility to test on one of the compute
nodes of the Swiss Light Source at PSI.

ICALEPCS 2017, 7th-13th October, Barcelona,
contribution THPHA167.

This work is part of the BrightnESS work package 5.3 and funded by 
the European Union Framework Programme for Research and 
Innovation Horizon 2020, under grantagreement 676548.

(*) dominik.werder@psi.ch

EPICS Variable

EPICS Forwarder
PVStructure

Q
u
e
u
e

PVStructure

Flatbuffer

Q
u
e
u
e

Configurable
Conversion

Module

librdkafka

EPICS Forwarder
The Experimental Physics and Industrial Control 
System (EPICS) is used at many scientific facilities 
around the world, including particle accelerators and 
telescopes.
At ESS, typical data from EPICS includes the sample 
environment, choppers and motion control.
To integrate EPICS data sources into the unified 
streaming architecture, we develop the EPICS 
Forwarder component.

Data Flow

A set of EPICS variables is monitored by the EPICS 
Forwarder. Each update is fed through the configured 
conversion module which is responsible for the 
conversion to a Flatbuffer message. The resulting 
messages are then published on the common Kafka 
messaging layer.

AMORSIM - virtual AMOR
To guide our development before ESS receives 
operational equipment we use a simulation of the 
AMOR instrument located at PSI.
The simulation contains
• Neutron event generator (histogram → events)
• Dornier chopper with EPICS facade and TDC events
• Motor controller EL734
• Magnets

Devices are implemented in Python using Twisted.
The neutron event generator is written in C++ for 
higher performance.

A set of 
worker 
threads
perform the 
conversion. This platform will also serve as a test environment 

during the development of the Experiment Control 
Program.

The EPICS Forwarder can be configured and 
controlled with JSON commands over the Kafka 
command topics.

https://github.com/ess-dmsc/forward-epics-to-kafka

AMOR schematic:

The HDF File Writer is responsible for reading the data streams 
from the Kafka messaging layer and assembling them into NeXus-
compliant HDF files.
File Writing is initiated and configured using JSON commands 
which are also distributed via the messaging layer. Typically, the 
Experiment Control Program initiates file writing on request of the 
user.
The main process of the file writer is responsible for command 
handling and can spawn multiple file writer tasks.
Writing of each data stream is handled either:
• On a common thread
• In its own thread(s)
• On a set of MPI worker processes
which can be configured as part of the command message.
Results presented here use MPI worker processes and Parallel HDF.

HDF File Writer

Maximum throughput reached 
with ~6 worker processes

Unbuffered writes are 
inefficient for small 
messages

Buffered writes 
achieve high 
throughput also for 
small messages but 
require more workers.

Benchmarks done on:
Xeon E5-2690v4
14 Cores @ 2.60 GHz
35 MB Cache
256 GB RAM
GPFS via 4x Infiniband FDR

Data Flow:

The Message Passing Interface (MPI) is used because the HDF 
library does not support multiple threads. Instead, its variant 
Parallel HDF utilizes MPI-I/O for parallel file system access.
The HDF File Writer starts as only one process and spawns the 
requested number of MPI processes at runtime.

Stream-
Queue

Flatbuffer

HDF File Writer

Writer Module
Translation from Flatbuffer
message to HDF dataset

Stream-
Queue

Stream-
Queue

MPI Process Group

Pluggable writer 
modules

HDF structure is defined by the 
command which initiates file writing. 
The command is typically issued by the 
Experiment Control Program.

libhdf
Throughput does not strongly 
depend on the chunk size.

https://github.com/ess-dmsc/kafka-to-nexus

Summary:
• Experimental data at ESS will be streamed via a
• unified messaging layer
• EPICS process variables are forwarded to
• the messaging layer
• NeXus-compliant HDF files are assembled
• from message streams

We present:
• The EPICS-to-Kafka Forwarder component
• The HDF File Writer component
• Performance measurements for these components

Data Streaming for ESS
The European Spallation Source (ESS) will use a unified but 
flexible data aggregation and streaming architecture. The 
advantages include:
• Decoupling of the individual parts of the system
• Well defined common interfaces
• Component-oriented software design
• Improved scalability due to better separation of concerns

The messaging layer is built on top of:
• A unified message broker (Apache Kafka)
• A common message format (Google Flatbuffers)

Commit log ("partition")0

n

Message queue ("topic")

Kafka provides "topics", which are 
named sets of persistent commit 
logs.

Partitions can 
live on different 
machines for 
scalability and 
be replicated 
for redundancy.

Flatbuffers is a:

Efficient serialization format, used for all messages
• Binary, no conversions needed on write
• Statically typed
• Flexible schema language
• Based on offset-pointers, read without parsing
• Verification logic auto-generated
• Supports C, C++, Python, JS, Java, C#, ...
• Designed with maintainability in mind
Common schemas at:
https://github.com/ess-dmsc/streaming-data-types

Streaming Data Architecture for ESS benchmarked 
on virtual AMOR 

Dominik Werder (*), M. Könnecke, M. Brambilla, Paul Scherrer Institut, Villigen, Switzerland
  M. Jones, Tessella, Abingdon, United Kingdom

T. Richter, ESS ERIC, Lund, Sweden, A. Mukai, J. Nilsson, ESS ERIC, Copenhagen, Denmark
M. J. Clarke, F. A. Akeroyd, Science and Technology Facilities Council, Didcot, United Kingdom


