
Applying model checking to critical
PLC applications: An ITER case study

B. Fernández, D. Darvas, E. Blanco, CERN, Geneva, Switzerland
Gy. Sallai, BME, Budapest, Hungary
I. Prieto, IBERINCO, Madrid, Spain
G. Lee, Mobiis Co. Ltd., Seoul, South Korea
B. Avinashkrishna, Y. Gaikwad, S. Sreekuttan, Tata Consultancy Services, Pune, India
R. Pedica, Vitrociset s.p.a, Rome, Italy

THPHA161

Photo of the TOKAMAK: © ITER Organization, http://www.iter.org/, included for informational use.
We thank the ITER interlock team for their support of this work.

You can find the paper and more information at

http://cern.ch/plcverif
http://iter.org

ITER
World collaboration to build the first fusion 
device producing net energy and to maintain 
fusion for long periods of time.

HIOC
High-integrity communication protocol to 
ensure safe masking of interlocks for 
commissioning and maintenance.

GOAL: Verification and better understanding of the PLC program implementing the HIOC protocol

Protocol
Black channel approach

 As defined in IEC 61508
 No guarantees expected from the

underlying communication protocols

Three-phase protocol
 Ensures the integrity of 
 the transmitted message

Model checking

Outcome

Implementation

Formal proof of correctness Improved understanding

Assertion-based verification

 Ongoing work
 Formalising and checking all

important requirements is an ongoing work
 Difficult to ensure completely:

All tools in the toolchain must be verified

Formal model

Formal requirement
Model checker

Checks the satisfaction of the 
requirement for all possible 

executions

Model checking is a formal verification 
method that checks the satisfaction of 
a formal requirement on a formal model 
with mathematical precision for all 
possible executions.
In case a violation of a requirement is 
found, often a counterexample can be 
provided that shows a trace leading to 
the violation.

PLCverif
 Model checking solution for PLC programs
 Hides the formal details from the users
 Integrates multiple model checking engines
 Developed at CERN

 Pattern-based requirement:
Fixed English sentence with place-
holders to be filled by the verifier

 nuXmv: State-of-the-art symbolic
model checker tool

+ Can check rich, complex
requirements

– Performance can be a bottleneck

 Verification assertion:
Logic expression in the code that 
must always be satisfied

 CBMC: Bounded model checker to
check assertion violations in C code

+ Fast verification
– Assertions can only represent

simple requirements
– Bounded model checking ensures

correctness only for certain length

Result: satisfied

Result: not satisfied,
potentially with a 
counterexample

or

Pattern-based 
requirement

CBMC input
(C code for verification)

Verification resultSTL code

Formal requirement
(temporal logic) nuXmv model

LAD code

FBD code

+ assertion
SCL code

Formal intermediate 
model

Reductions

Via counterexamples Via requirement formalisation
 A counterexample can show a witness of 

an incorrect behaviour
 Similarly, counterexamples can be used to 

provide examples (traces) of any behaviour
 Such trace may reveal peculiar, unexpected

functionality

 Model checking requires formal requirements
 Removing all ambiguity from informal

specifications is difficult and often reveals
interesting corner cases

 Needs collaboration of specifiers, developers 
and verifiers

Communication with SCADAChecking signal integrity

WinCC OA
SCADA

S7-400
PLCs

HIOC
over S7

PLCverif s verification workflow

Pattern-based verification

HIOC_SFT
fail-safe CFC function block

HIOC_STD
standard SCL function block

+

CERN Beams Department
Industrial Controls and Safety Systems Group (ICS)


	icalepcs_iter_poster.vsdx
	Page-1


