
RenovationandExtensionofSupervision
Software leveragingReactiveStreams

M.-A. Galilée, J.-C. Garnier, K. Krol, T. Ribeiro, M. Osinski, A. Stanisz, M. Pocwierz,
J. Do, A. Calia, K. Fuchsberger, M. Zerlauth - CERN, Switzerland

Motivation
A common issue with software systems for which maintenance and evolu-
tion stretched over years and multiple core developers is the emergence of
a cluttered architecture. It occurs even in seemingly simple cases such as
supervision software, where the base use-case is the acquisition, processing
and exposition of data from operational devices.
While planning the renovation of the Beam Interlock System (BIS) soft-
ware layer, reactive streams appeared as a promising solution:

• They provide an adequate model to the primary supervision software
needs.

• They can allow for flexible designs, which nevertheless promote co-
herent maintenance actions in the longer term.

• They can be combined into re-usable blocks, which can easily be
built upon, even outside of the initial supervision scope.

The streams paradigm

fig. 1 - a complex case, modeled visually

Streams are ideal to model flows of data, a recurring use-case in the ma-
chine controls environment: acquire, transform, deliver.
Basic data processing steps, such as conversion, filtering or buffering, are
very simply expressed in marble diagrams [1]. Even more complex cases
can likewise be visualized and conceived with clarity, such as this analysis
helping validate a new BIS hardware loop (SFP), using the operational
loop (LHC) as a reference.

Composable architecture

fig. 2 - the full tree of streams within the BIS software

A more functional approach to software development is re-
quired to properly work with streams. While there is a sig-
nificant learning curve to adapt to this model, some benefits
are gained from the start:

• Streams organize into a simple hierarchy, representative
of the functionality of the system as a whole.

• Each stream is responsible for a single processing step,
albeit of arbitrary complexity. This is better achieved
with stateless processors, applying pure transformations
to the data.

• Each stream acts as a clear separation between what is
below it and what is above it; each layer does not need
to concern itself with any other layer’s business.

Re-usability
The Streamingpool framework [2, 3] is instrumental to having reusable streams.
By fully decoupling the definition of a stream and its materialization, it allows any
specific stream to be plugged into any arbitrary context, as long as the streams
(usually just one) it directly depends on are provided somehow. Those can be
mocks, simulated or alternative acquisition sources, or any implementation of the
same contract.
In practice, as long as the data produced by a stream is not coupled to a context,
this stream can be straightforwardly integrated into another application.

fig. 3 - BIS permit stream definition reuse across applications example

Dealing with legacy
public static StreamId <MyData > decodedDataStream (Device dev) {

StreamId <MyData > dataStreamId = DerivedStreamId . derive (
RawStreamHelper . rawDataStream (dev),
DataConversionFactory . getConversionMethod (dev));

if (dev. isLegacy ()) { // apply a wart
return new WartStreamId (dataStreamId);

} // in a very well - contained manner

return dataStreamId ;
}

fig. 4 - wart containment procedure

Legitimate circumstances can also bend the architecture and code
out of their original shape. While unavoidable, these warts should
not leak throughout the code base, neither hinder further mainte-
nance and evolution.
The streams hierarchy allows for proper containment of such flaws,
both in the architecture and in the code. Besides, legacy paths can
be very simply cut out when the circumstances change.

Headaches
Implementing a streams design uncovered some drawbacks.
Most notably:

• RxJava [4] is the go-to streams library. Still, it has a
steep learning curve and is not bug free.

• Streams do not prevent abstraction leaks. Moreover,
parent streams behaviors impact the behavior of child
streams, in sometimes complex ways.

• Full asynchronicity implies edge cases far too numerous
to possibly cover with tests, when multiple streams are
involved.

Prospects
Some topics need further attention to be eval-
uated and the streams ecosystem still grows:

• Fine tuning of the backpressure mech-
anisms. This is critical to performance
optimization.

• Multiple efforts are bringing reactive
streams over the network [5].

• Inter-operability with lower-level super-
vision software, whether in Java [6] or
through native means [5].

References
[1] http://rxmarbles.com/

[2] A. Calia, K. Fuchsberger et al., “Stream-
ing Pool - Managing Long-Living Reac-
tive Streams for Java”, ICALEPCS17,
Barcelona, Spain (2017).

[3] https://github.com/streamingpool

[4] https://github.com/ReactiveX/
RxJava

[5] https://reactivesocket.io

[6] C. Cardin, J.-C. Garnier et al., “Real-
Time Java to Support the Device Prop-
erty Model”, ICALEPCS17, Barcelona,
Spain (2017).

1

