
Legend:

L. M. Russo, Beam Diagnostics Group
Brazilian Synchrotron Light Laboratory, LNLS, Brazil

THPHA149

The Brazilian Synchrotron Light Laboratory (LNLS) is in the final stages of developing
an open-source BPM system for Sirius, a 4th-generation synchrotron light source under
construction in Brazil. The system is based on the MicroTCA.4 standard comprising AMC
FPGA boards carrying FMC digitizers and a CPU module. The software is built with the
HALCS framework and employs a service-oriented architecture (SOA) to export a flexible
interface between the gateware modules and its clients, providing a set of loosely-coupled
components favoring reusability, extensibility and maintainability. In the paper, the BPM
system will be discussed in detail focusing on how specific functionalities of the system are
integrated and developed in the framework to provide SOA services. In particular, two
domains will be covered: (i) gateware modules, such as the ADC interface, acquisition
engine and digital signal processing; (ii) software services counterparts, showing how
these modules can interact with each other in a uniform way, easing integration with
control systems.

Software and Gatew are Development for
 Sirius BPM Ele ctronics Using a

Service-Orient ed Architecture

BPM Project Gateware

BPM Project Software using HALCS framework

Protocol Conversion

Peripheral #1

Peripheral #2

Bridge #1

Peripheral #3.1

Peripheral #3.2

Peripheral #4

Communication Interface

Figure 1. Generic Hardware Architecture.

Communication Interface

Peripheral
Controller #4

Peripheral
Controller #3.2

Peripheral
Controller #3.1

External
protocol

Intra-Controller
protocol

Peripheral
Controller #2

Peripheral
Controller #1

Figure 2. SOA-based Software Architecture.

Figure 6. BPM Software Architecture.

Client Layer

Broker Layer

Service Layer

Device Access Layer

HALCS DataflowIntroduction

Pipe Protocol

MLM Protocol

Board
Support

HAL

Dispatch
Engine

Broker

MLM Protocol

Kernel

PCIe

LLIO

DEVIO

SMIO #2 (e.g.,
Data Acquisition)

SMCH

SMPRSMPR

SMCH

SMIO #1 (e.g.,
FMC130 Control)

MALAMUTE Broker

Client App #2
(e.g., CLI interface)

Client App #1
(e.g., EPICS IOC)

Eth (TCP)

Figure 3. HALCS Framework Architecture.

Links
HALCS Framework: https://github.com/lnls-dig/halcs
BPM EPICS IOC: https://github.com/lnls-dig/bpm-epics-ioc
BPM Gateware: https://github.com/lnls-dig/bpm-gw
DSP Cores: https://github.com/lnls-dig/dsp-cores
Infra Cores: https://github.com/lnls-dig/infra-cores
Timing Receiver: https://github.com/lnls-dig/timing-receiver-gw

Summary
● SOA principles applied to low-level software maximize reuse of commonly used

functionalities
● Best used in conjunction with isolated hardware components with minimal interaction

among each other
● Succesfully deployed in the BPM and the upcoming MicroTCA.4 Timing Receiver

projects

Generic Hardware Architecture

SOA-based Software Architecture

● Standard communication
interfaces: PCIe, UART, etc.

● Hierarchical Design, e.g.
based on open-source
Wishbone Bus Protocol

● Peripherals with minimal
interaction, acting as isolated
components

● Desirable to have knowledge
about internal components
such as: unique ID, name,
address range, version,
capabilities

● Software abstracts
hardware components as
services

● Uses a common protocol to
communicate with hardware
device

● Services can coordinate
themselves by using an
Intra-Controller protocol

● Protocols acts as a
flexible/extensible API

● HALCS Framework implements
SOA principles, using an Inversion
of Control design paradigm

● Uses a common RPC protocol to
expose services functionalities

● Broker provides discoverability
and reliability to services using
Mailbox messaging pattern

● Services (SMIO) register functions

● Services can use additional
abstractions:

● SMCH for external chips:
AD9510 clock distributor and
PLL, Si57x clock oscillator, etc.

● SMPR for external protocols:
SPI, I2C, etc.

● DEVIO: Event-driven reactor
engine

● LLIO: Hardware Abstaction Layer

● Reusable gateware components, based on Wishbone B4

● Self-Describing Bus (SDB) aware components:

● Easier for software to be gateware-agnostic: dynamic offsets, version, capabilities

● Software can act as a userspace driver

● Application logic pushed to Client Layer

Figure 5. BPM Hardware Architecture.

Switch.
Clock

DSP
Data,

Controls
& Clock

cos

-sin

I

Q

NCO

CORDIC
(Rect-Pol)

tbt
amp.

CIC

CIC

CIC

CIC

tbt

tbt

CORDIC
(Rect-Pol)

fofb
amp.

fofb

fofb

CIC
mon.
amp.

x4

DSP
Data

Signal
Deswap

x2

x2

FMC ADC
Board

RFFE
Board

LEDs
Trigger

Backplane

Addr. Space
WB Slave

DAQ

Addr. Space
WB Slave

Trigger
Mux

WB Slave
Addr. Space

WB Slave
Addr. Space

Switching
Clk. Gen.

WB Master

WB
Crossbar

SDB

WB Slave

To all
WB Slaves

Addr. Space
WB Slave

Heartbeat
& LEDs

Addr. Space
WB Slave

Trigger
Interface

delay

diff.
sum

adc

tbt

fofb

mon.

adc

tbt

fofb

mon.

x
y
q

sum

fofb
amp.
1 to 4

Data

MMC

Addr. Space
WB Slave

Diagnos-
tics

Serial

Addr. Space

PCIe
Interface

WB Master
Addr. Space

UART
(optional)

WB Master

FPGA

DDR3
SDRAM

2GB

MGT
Transceiver

WB Slave
Addr. Space

FMC ADC
Interface

WB Slave
Addr. Space

A. Sp.
WB Slv.

ADC
Clock

A. Sp.
WB Slv.

FMC
Misc.

1. Caller instantiates LLIO

2. Caller instantiates DEVIO

3. Caller registers SMIOs
manually or via SDB

4. SMIOs registers into
Malamute Broker

5. Clients may send/receive
messages to any SMIO

MSG
PIPE

DEVIO PIPE DEVIO PIPE:
REGISTER_SMIO
REGISTER_SMIO_ALL
UNREGISTER_SMIO
UNREGISTER_SMIO_ALL

 MSG PIPE:
 External Protocol

Event loop

CMD PIPE:
$TERM

MALAMUTE:
RPC protocol

Event loop

RPC over
Malamute

CMD
PIPE

RPC over
Malamute

RPC over
Malamute

Figure 4. HALCS Dataflow.

HALCS Architecture

Device Interface

RPC Client Interface

Trigger Control &
Status

Trigger Interface

Device Interface

RPC Client Interface

Heartbeat&LEDs

LEDs Control &
Status

Device Interface

RPC Client Interface

IPMI Info
Board
Status

Diagnostics

x2
Device Interface

RPC Client Interface

Testing
Functions

LEDs
Trigger
Control

FMC
Status

FMC Misc.

x2
Device Interface

RPC Client Interface

DSP Configuration

Swithching
Control

DSP

Device Interface

RPC Client Interface

Trigger Mux

Mux Control

x2

Device Interface

Support
Functions

Status

Data
Transfer

Trigger
Control

RPC Client Interface

DAQ

x2

I2C

Oscillator
Control Control &

Status
SPI

PLL Control

Device Interface

RPC Client Interface

FMC ADC Clock

x2x2
Device Interface

RPC Client Interface

ADC
Control

SPI

Control &
Status

FMC ADC

Dispatch Engine
(DEVIO)

SDB
lib

Device Interface

RPC Client Interface

Deswap Control

Deswap

x2

External protocol

Intra-Controller
protocol

RPC client protocol

Application-Specific
Module (SMIO)SMIO

HAL (LLIO)

PCIe

To all RPC
Client Interfaces

To all RPC
Client Interfaces

To all
Clients

MALAMUTE Broker
To all
Clients

EPICS Driver
Command-Line

Interface

Client Layer

Broker Layer

Service Layer

Device Access Layer

https://github.com/lnls-dig/halcs
https://github.com/lnls-dig/bpm-epics-ioc
https://github.com/lnls-dig/bpm-gw
https://github.com/lnls-dig/dsp-cores
https://github.com/lnls-dig/infra-cores
https://github.com/lnls-dig/timing-receiver-gw

	Slide 1

