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The Brazilian Synchrotron Light Laboratory (LNLS) is in the final stages of developing 
an open-source BPM system for Sirius, a 4th-generation synchrotron light source under 
construction in Brazil. The system is based on the MicroTCA.4 standard comprising AMC 
FPGA boards carrying FMC digitizers and a CPU module. The software is built with the 
HALCS framework and employs a service-oriented architecture (SOA) to export a flexible 
interface between the gateware modules and its clients, providing a set of loosely-coupled 
components favoring reusability, extensibility and maintainability. In the paper, the BPM 
system will be discussed in detail focusing on how specific functionalities of the system are 
integrated and developed in the framework to provide SOA services. In particular, two 
domains will be covered: (i) gateware modules, such as the ADC interface, acquisition 
engine and digital signal processing; (ii) software services counterparts, showing how 
these modules can interact with each other in a uniform way, easing integration with 
control systems.
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Figure 1. Generic Hardware Architecture.
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Figure 2. SOA-based Software Architecture.

Figure 6. BPM Software Architecture.
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Figure 3. HALCS Framework Architecture.

Links
HALCS Framework:  https://github.com/lnls-dig/halcs
BPM EPICS IOC:    https://github.com/lnls-dig/bpm-epics-ioc
BPM Gateware:     https://github.com/lnls-dig/bpm-gw 
DSP Cores:        https://github.com/lnls-dig/dsp-cores     
Infra Cores:      https://github.com/lnls-dig/infra-cores
Timing Receiver:  https://github.com/lnls-dig/timing-receiver-gw

Summary
● SOA principles applied to low-level software maximize reuse of commonly used 

functionalities
● Best used in conjunction with isolated hardware components with minimal interaction 

among each other
● Succesfully deployed in the BPM and the upcoming MicroTCA.4 Timing Receiver 

projects

Generic Hardware Architecture

SOA-based Software Architecture

● Standard communication 
interfaces: PCIe, UART, etc.

● Hierarchical Design, e.g. 
based on open-source 
Wishbone Bus Protocol

● Peripherals with minimal 
interaction, acting as isolated 
components

● Desirable to have knowledge 
about internal components 
such as: unique ID, name, 
address range, version, 
capabilities

● Software abstracts 
hardware components as 
services

● Uses a common protocol to 
communicate with hardware 
device

● Services can coordinate 
themselves by using  an 
Intra-Controller protocol

● Protocols acts as a 
flexible/extensible API 

● HALCS Framework implements 
SOA principles, using an Inversion 
of Control design paradigm

● Uses a common RPC protocol to 
expose services functionalities

● Broker provides discoverability 
and reliability to services using 
Mailbox messaging pattern

● Services (SMIO) register functions

● Services can use additional 
abstractions:

● SMCH for external chips: 
AD9510 clock distributor and 
PLL, Si57x clock oscillator, etc.

● SMPR for external protocols: 
SPI, I2C, etc.

● DEVIO: Event-driven reactor 
engine

● LLIO: Hardware Abstaction Layer

● Reusable gateware components, based on Wishbone B4

● Self-Describing Bus (SDB) aware components:

● Easier for software to be gateware-agnostic: dynamic offsets, version, capabilities

● Software can act as a userspace driver

● Application logic pushed to Client Layer

Figure 5. BPM Hardware Architecture.
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Figure 4. HALCS Dataflow.
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