16th International Conference on Accelerator and Large Experimental Physics Control Systems

Conceptual Design of Vacuum Control System for ILSF

A. Khalilzadeh⁺, M. Akbari, M. Jafarzadeh, J. Rahighi Iranian Light Source Facility, IPM, P. O. Box 19395-5746, Tehran, Iran

Abstract

Many The Iranian Light Source Facility (ILSF) is a new 3 GeV third generation synchrotron light source facility with circumference of 528 m, which is in the design stage. In this paper conceptual design of vacuum control systems presented. The control system architecture, Software toolkit and controller in device layer are discussed in this paper

Storage ring vacuum

The vacuum chambers will be made of stainless steel and will be baked out before installation. 580 ion pumps, 180 TPS and 100 NEG pump have been foreseen for the storage ring

One of important character of vacuum control system is the implementation of object oriented concept in vacuum PLC's. In this approach, equipment lays behind of virtual graphs which describe the dynamic behavior of the system. This character helps us to remove or add different components from and to the vacuum system easily and reduce the consequences of the required programming.

Main parameters of the ILSF storage ring Unit Value Parameter GeV Energy Circumference 528 m 275 Emittance nm-rad

Current mA Length of straight section m Number of straight section MHz RF frequency

Calculations have shown that the maximum pressure in storage ring will be lower than 1.8×10^{-9} mbar during operation time.

Monitoring level

EPICS

control system toolkit

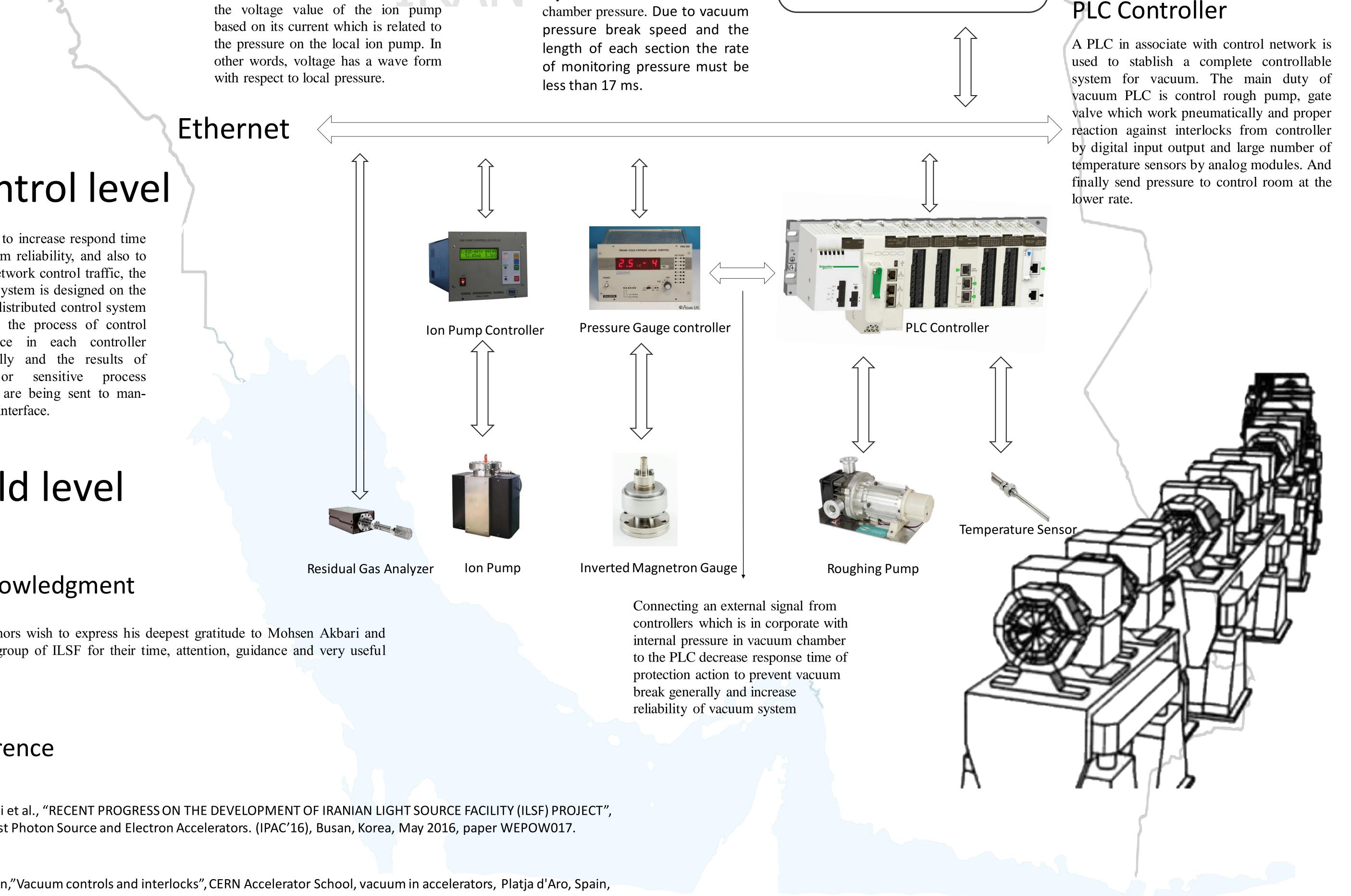
Open source and wide usage are the two main factors which have led us to choosing EPICS as a control system toolkit for ILSF.

Ion Pump Controller

400

20

100


Qazvin

ion pump controller must have an intelligence behavior, i.e. it should set

Gauges controller

Controllers which drive pressure gauges must calculate the rate of pressure change to detect any leak in vacuum chamber and send interlock signal in case of detect any abnormal increase rate

Data Base

Control level

In order to increase respond time and system reliability, and also to reduce network control traffic, the vacuum system is designed on the basis of distributed control system in which the process of control take place in each controller individually and the results of events or sensitive process variables are being sent to manmachine interface.

Field level

Acknowledgment

The authors wish to express his deepest gratitude to Mohsen Akbari and vacuum group of ILSF for their time, attention, guidance and very useful advices.

Reference

J. Rahighi et al., "RECENT PROGRESS ON THE DEVELOPMENT OF IRANIAN LIGHT SOURCE FACILITY (ILSF) PROJECT", in Proc. 2st Photon Source and Electron Accelerators. (IPAC'16), Busan, Korea, May 2016, paper WEPOW017.

P. Strubin," Vacuum controls and interlocks", CERN Accelerator School, vacuum in accelerators, Platja d'Aro, Spain, 16-24 May 2006, p.369-388