
Lightflow - A lightweight, distributed workflow system
Andreas Moll, Stephen Mudie, Robbie Clarken, Paul Martin

synchrotron.org.au | ansto.gov.au

After more than 10 years of operation, the beamlines at the Australian Synchrotron are
well established and the demand for automation of research tasks is growing. In order to
meet these demands we have developed a generic distributed workflow system.

Lightflow models a workflow as a set of individual tasks arranged as a directed
acyclic graph (DAG). This specification encodes the direction that data flows as well
as dependencies between tasks. Each workflow consists of one or more DAGs. While
the arrangement of tasks within a DAG cannot be changed at runtime, other DAGs
can be triggered from within a task, therefore enabling a workflow to be adapted to
varying inputs or changing conditions during runtime.

The phaseID pipeline at the SAXS/WAXS beamline identifies diffraction peak
positions within SAXS profiles and infers the most likely space group. This pipeline
enables researchers to rapidly determine phase diagrams for self-assembled
lyotropic liquid crystal systems.

The data compression and management pipeline at the two crystallography
beamlines (MX1, MX2) has recently been upgraded to use Lightflow in order to take
advantage of a distributed system to compress multiple experiments at the same
time.

Lightflow employs a worker-based queuing system, in which workers consume
individual tasks. This allows the processing of workflows to be distributed.

In order to avoid single points of failure, such as a central daemon as is often found
in other workflow tools, the queuing system is also used to manage and monitor
workflows and DAGs.

Tasks can receive data from upstream tasks and send data to downstream tasks.
Any data that can be serialised can be shared between tasks. Typical examples for
data flowing from task to task are file paths, pandas DataFrames or numpy arrays.

Lightflow provides a fully featured command line interface for starting, stopping and
monitoring workflows and workers.

The source code has been published as open source on GitHub and on PyPI.

https://github.com/AustralianSynchrotron/Lightflow

https://australiansynchrotron.github.io/Lightflow

Architecture

Lightflow is written in Python 3 and
supports Python 3.5+

It uses the Celery library for queuing
tasks and the NetworkX module for
managing the directed acyclic graphs.

As redis is a common database found
at many beamlines at the Australian
Synchrotron, it is the default backend
for Celery in Lightflow.

However, any other Celery backend
can be used as well.

Lightflow uses MongoDB in order to
store data that is persistent during a
workflow run.

Examples include the aggregation of
values, calculation of running
averages, or the storage of flags.

Lightflow is being developed and
tested on Linux, with Debian and
RedHat being the main platforms.

Implementation

Examples

Download

Workflow definition

Task 1 Task 2 Task 4

Task 3

Task 1 Task 2 Task 4

Task 3

Task 1 Task 2 Task 4

Task 3

Task 2

Task 3

Workflow workflow dag task

DAG 1

DAG 2

Task 1

Task 3

Task 4Task 2

Task 1

Task 3

Task 4Task 2 Task 1

Task 3

Task 4Task 2

Task 1

from lightflow.models import Dag

from lightflow.tasks import PythonTask

the callback function for the tasks

def print_info(data, store, signal, context):

print('Task {task_name} being run in DAG {dag_name} for workflow {workflow_name} ({workflow_id})'.format(**context.to_dict()))

create the main DAG

d = Dag('main_dag')

task that limits the branching to certain successor tasks

branch_task = PythonTask(name='branch_task', callback=print_info)

first task, first lane

lane1_print_task = PythonTask(name='lane1_print_task', callback=print_info)

first task, second lane

lane2_print_task = PythonTask(name='lane2_print_task', callback=print_info)

first task, third lane

lane3_print_task = PythonTask(name='lane3_print_task', callback=print_info)

joins all three lanes together and waits for the predecessor tasks to finish processing

join_task = PythonTask(name='t_join_me', callback=print_info)

set up the graph of the DAG as illustrated above. Please note how a list of tasks

defines tasks that are run in parallel (branched out).

d.define({branch_task: [lane1_print_task, lane2_print_task, lane3_print_task],

lane1_print_task: join_task,

lane2_print_task: join_task,

lane3_print_task: join_task})

$ pip install lightflow

