

Roadmap for SLAC EPICS-based Software for the LCLS-I/II Complex

D. Rogind[#], J. Delong, D. Flath, M. Gibbs, B. Hill, T. Maxwell, A. Perazzo, M. Shankar, G. White, E. Williams Jr., M. Zelazny SLAC National Accelerator Laboratory, Menlo Park, CA 94025, U. S. A.

Why was PyDM chosen as a Display Manager over CSS BOY?

- Minimize # of languages & skill sets to maintain
- Dynamic displays can easily be built for LCLS-II, with complex, multi-e-beam destinations & multiple electron sources
- Fulfills SLAC-wide accelerator and beamline use cases
 - Beamline is developing PyDM
 - Operators, physicists, users, engineers widely script in python; low barrier to entry

Requires:

- pvaPy (for EPICS 7 enabled PyDM) evaluation; potential performance improvement
- Aggregation/throttling of PV monitor client callbacks
- EPICS 7 IOCs (requires a robust qSrv)
- EDM -> PyDM conversion utility (desired)

The same image widget used in a drag-and-drop display (left) and in a high level application (HLA) (right). HLA developers don't have to reinvent updating the UI when a PV changes, zooming, colormaps, etc.

Dynamic displays are easy to build in PyDM. This magnet panel is filterable at run-time by magnet type and location. The scrolling list of filtered magnets is populated from the directory service.

File View								
Search for a display					Go	Back	Forward	Home
Filtering								
✓ XCORs	QUADs (LI29 LI30)							Filter
✓ XC29202 202	-0.0102700 0.0000096	0.0000000 kG-m	Trim Pertur	b -10.0 0.0 10.0	Ready	\$	Cancel	Good
✓ XC29302 302	0.0000675 0.0000038	0.000000 kG-m	Trim Pertur	b -10.0 0.0 10.0	Ready	\$	Cancel	Good
✓ XC29402 402	0.0116000 0.0000269	0.0000000 kG-m	Trim Pertur	b -10.0 0.0 10.0	Ready	\$	Cancel	Good
✓ XC29502 502	0.0000000 0.0000307	0.0000000 kG-m	Trim Pertur	b -10.0 0.0 10.0	Ready	\$	Cancel	Good
✓ XC29602 602	-0.0110400 -0.0000038	0.000000 kG-m	Trim Pertur	b -10.0 0.0 10.0	Ready	\$	Cancel	Good

Each row of magnet controls comes from a single, custom 'magnet item' widget, which is easy to reuse across many displays. This pattern (a custom widget for a type of device, paired with a list of devices gathered from a service) reduces development time and maintenance effort.

THSH102 PyDM: A Python-Based Framework for Control System Graphical User Interfaces

Services	Dire Ser	irectory Mode Service Servic		el ce	l Infrastruct. e Service		Archive Service	f	Magnet Poly's Svc.		SCORE Service		BSA Service
	IOC Crawl	MAD	Oracl e	XAL	Oracle		Archive Appliance		Oracle		Oracle		
							Pva Gateway					E	Ethernet
											_		
Distribute	d	rSrv	qSrv	rS	Srv qSrv		rSrv ^{qSrv} (pulseid)		rSrv ^{qSrv} (pulse	v eid)		r	Srv qSrv
Front-ends (IOCs) PS. DI		Db	Vac. Db			RF. Db		BPM/Diag. D	PM/Diag. Db		SoftIOCs. Db		
l		Physic	al Dev	Phy	sical Dev		Physical Dev		Physical De	ev		G	Greg White

- Add to existing suite with pulse Beam Synchronous Acquisition (BSA) Service to synchronize data across devices (z) & deep time (phase) from LCLS-I & II timing data (diff. timing systems)
- Embed timing metadata (pulseID, charge, destination...) in NTScalar usertag

Requires:

- Timing metadata in NTScalar usertag, qSrv (equivalent of V3 rSrv), pvAccess Clients
- Archiver requires pvAccess Gateway

SLAC EPICS-based Software Roadmap

LCLS-II early injector commissioning (EIC) (FY18 Q1 – FY18 Q4) uses EPICS V3.15 IOCs, EDM, Channel Access (CA)

Component	Status & Plan
PyDM	In dev; contribute to EPICS community; collaborate
qSrv	From collaboration; make robust & contribute back
pvaPy	From collaboration; improve performance & contrib. back
Archive Appliance	Already EPICS 7-enabled; further enhance to embed timing frame; store/view complex data; contribute back
MAD model & new model Services	MEME framework in place; switch to MAD from XAL; merge LCLS-II with LCLS/FACET/ Devices DB RDB; Add other modeling services
BSA Service	Beam Synchronous Acquisition Service for LCLS & LCLS-II. Engage EPICS community for timing metadata incorporation
pvAccess Gateway (pva2pva)	From collaboration; make robust; add functionality; contribute back;
Data Aggregator	Evaluate options and develop to throttle pvAccess client callbacks

From now to FY20 (LCLS-II First Light) the following will be developed, as guided by the SLAC Software Workging Group:

- PyDM Display Manger adds features; will be productized
- Timing metadata will be embedded in NTScalar
- qSrv is made robust & incorporated into V3 IOCs, producing EPICS 7 IOCs; pvAccess & CA co-exist
- Structured data (w timing metadata) served via EPICS 7 IOCs & pvAccess is served to EPICS 7-aware clients
- pvAccess Gateway further tested, developed, integrated
- Structured data archived to EPICS 7-enabled Archive Appliance and viewable by enhanced Archive Viewer
- LCLS BSA Service incorporates LCLS-II BSA data

Note: MAD model will replace XAL model in parallel

