

Improvement of Temperature and Humidity Measurement System for KEK Injector Linac

I. Satake, M. Satoh, T. Suwada, Y. Yano, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan T. Kudou, S. Kusano, Y. Mizukawa, Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan

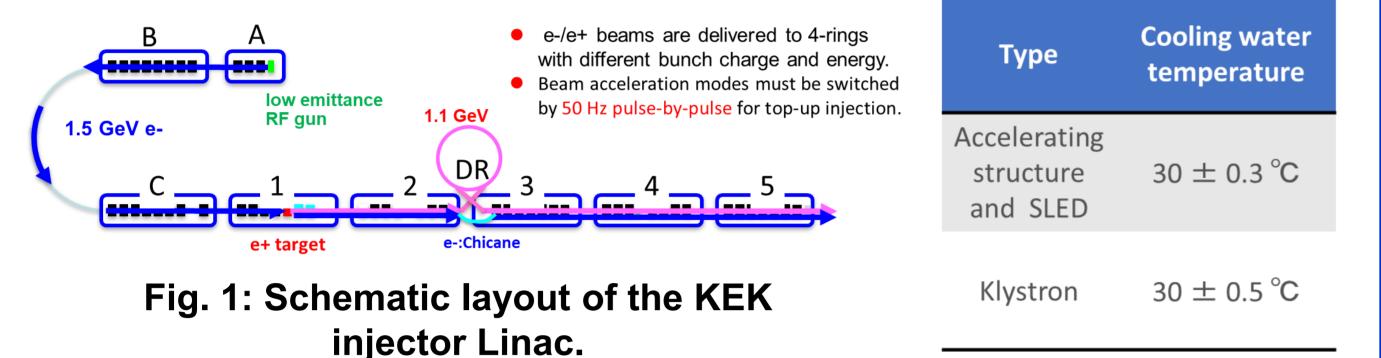
KEK Injector Linac

- Total length is about 600 m
- The ground floor (klystron gallery) and underground floor (tunnel).
- Klystron gallery is divided into sectors of about 80 m. A part of device name (EPICS PV name) includes sector name.

Stable operation of the injector Linac

⇒ The temperature of each operating device Tand its surrounding environment are very important information.

Table 1: Requirement of
Cooling WaterTemperature Stability


Conventional Measurement System

 The system is introduced to monitor the temperature, which is a measurement target for a large number of devices indispensable for operation of the injector Linac and its surrounding environment.

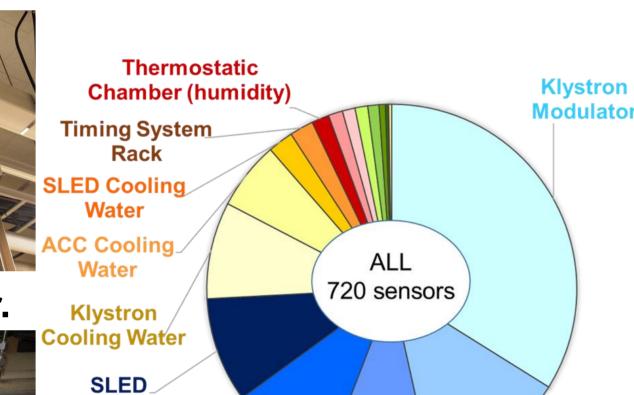
Alarm system

 Limited number of subsystem are monitored by temperature sensors (accelerating structure cooling water, inside tunnel, inside gallery)

 CSS archiver viewer: The web application to monitor the temperature and humidity data.

LliDL:GL_1A:KL_13:TUNNEL	Set	
LliDL:GL_3A:KL_33:TUNNEL	Set	End Absolute 2017/07/27
LliDL:GL_BA:KL_B3:TUNNEL	Set	Relative 1 + Hour v now
		Record list and Config : Save Load
		Record list only : Save Load
hide 🗌 Auto update 60 👻 [sec] 🗹 Sampling reset zoom Line Scatter export	CSV	png setting : Config

Fig. 2: CSS archiver viewer.


 However, it takes some time to display long-term data for retrieving the large amount of data points.

System Description

The temperature measurement system has the total number of 720 sensor units consisting of resistance temperature detector (RTD, Pt 100), thermocouple (K), humidity sensor, and 26 data loggers.

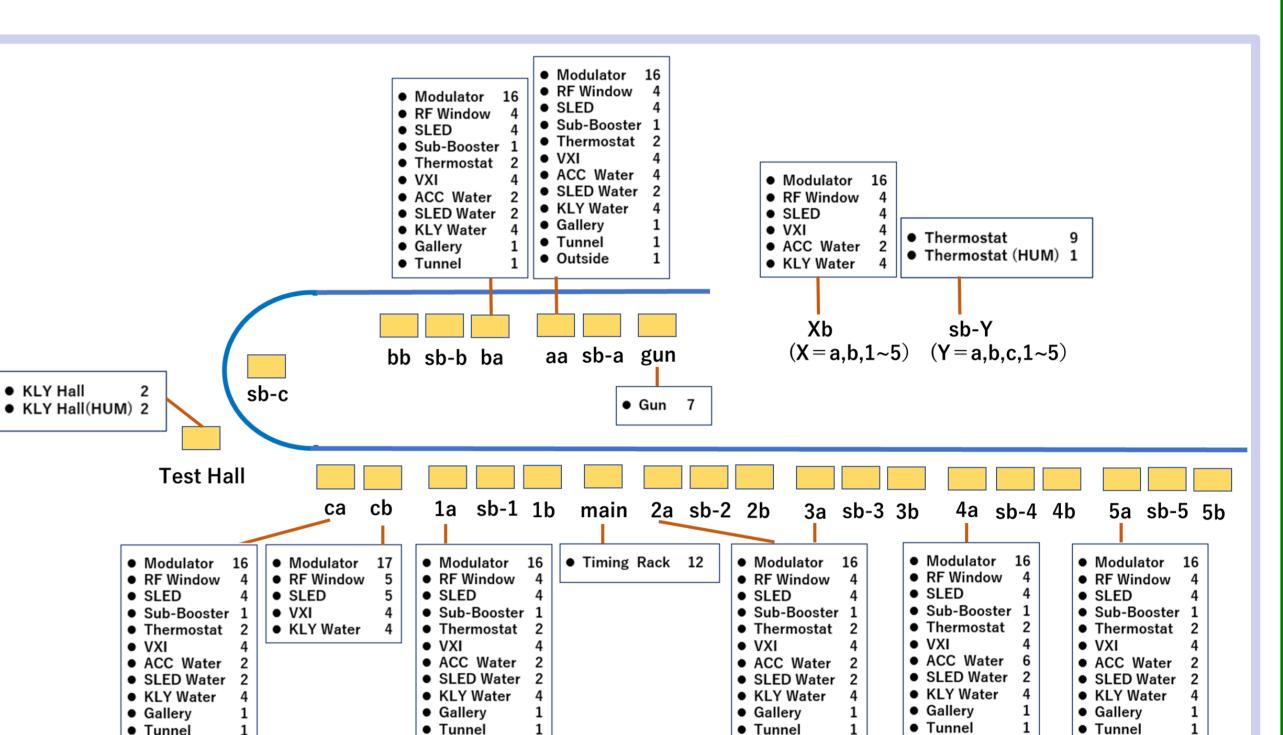
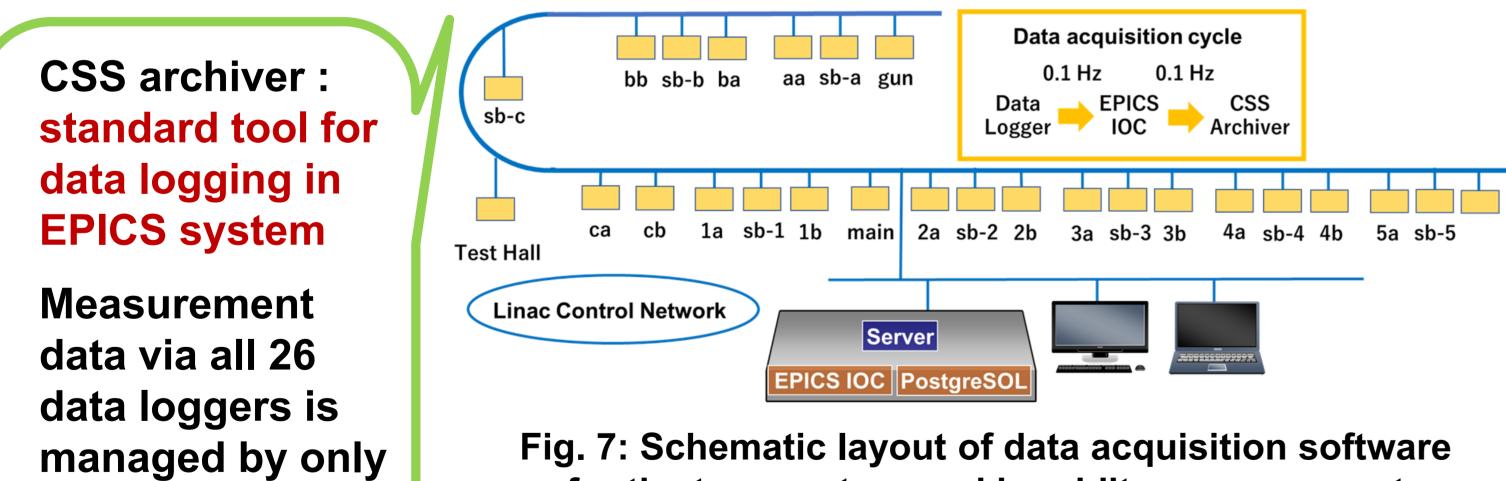


Fig. 3: Picture of the data logger.

Measuring Object				
Measurement object	# of measurement points			
Klystron Modulator	244			
Timing System Rack	15			
RF Window	66			
SLED	66			
Sub-Booster Klystron	9			
Thermostatic Chamber	91			
Thermostatic Chamber (humidity)	11			
VXI	67			
ACC Cooling Water	43			
SLED Cooling Water	16			
Klystron Cooling Water	61			
Gallery	8			
	1000			


 Table 2: Type and Number of

	RF Window Thermostatic		8	• Outside 1
	VXI Chamber	Klystron Test Hall	2	
		Klystron Test Hall (humidity)	2	Fig. 6: Schematic layout of data loggers for
	Fig. 5: Measurement object.	Outside	4	the temperature and humidity measurement 8 sector
		Gun	7	system at the KEK injector Linac. × 3~4 units
Fig. 4: Picture of the sensor.		ALL	720	

Data Acquisition Software

• EPICS IOC stores information that the data logger has collected and stored into EPICS PV. The CSS archiver engine acquires EPICS PV data and records them into PostgreSQL which is a Relational Database Management System (RDBMS).

for the temperature and humidity measurement system at the KEK injector Linac.

New Alarm System Software

e		Temperature Graph		2017-0728 16:35:35 1.0	1
-					ke-1a.db, LliDL:GL_1A:KL_12:KLY_WAI> HIGH
	view	er start	ALL Alarm		
Sector	Туре		e SB		ke-1a.db, LliDL:GL_1A:KL_14:KLY_WAI> HIGH
📕 A-a	⊔ SB	LIIDL:GL_AA:KL_A1:ACC_IN	e Main		ke-1a.db, LliDL:GL_1A:SB_1:SW> HIHI
📕 B-a	🔟 MAIN	LliDL:GL_AA:KL_A1:ACC_OUT LliDL:GL_AA:KL_A3:ACC_IN			
🔟 B-b	☐ KLY_WAI	LIDL:GL_AA:KL_A3:ACC_OUT	KLY_WAI		ke-1a.db, LliDL:GL_1A:KL_11:IPA> HIGH
🔟 C-a	⊒ WG_WAI	LIIDL:GL_BA:KL_B3:ACC_IN	😑 WG_WAI		
🔟 C-b	_ SW	LliDL:GL_BA:KL_B3:ACC_OUT	e sw		ke-1a.db, LliDL:GL_1A:KL_11:IVR> HIHI
_ 1-a	_ Thermostat_IN&OUT				ke-1a.db, LliDL:GL_1A:KL_11:TR1> HIHI
_ 1-b			Thermostat_IN&OUT		
_ 2-a	_ Modulator		😑 vxi		ke-1a.db, LliDL:GL_1A:KL_11:TR2> HIHI
_ 2-b	☐ KLY_WAT		Modulator		
_ 3-a	ACC_Cooling water				ke-1a.db, LliDL:GL_1A:KL_11:KLY_WAT> HIHI
_ 3-b	SLED_Cooling water		e KLY_WAT		
_ 4-a	☐ GALLERY	I	ACC_Cooling water		ke-1a.db, LliDL:GL_1A:KL_12:IVR> HIHI
<u> </u>		Time	SLED_Cooling water		ke-1a.db, LliDL:GL 1A:KL 12:TR1> HIHI
∐ 5-a	⊒ kt1	Start End			
<u> </u>	_ OUT	2017-0717 2017-0723	e GALLERY		ke-1a.db, LliDL:GL_1A:KL_12:TR2> HIHI
	_ gun		- TUNNEL		
all clear	all clear		e kt1		ke-1a.db, LliDL:GL_1A:KL_12:KLY_WAT> HIHI

Fig. 8: Image example of the new archiver data viewer and alarm display panel for managing temperature and humidity.

• The new alarm system determines the threshold by calculating the standard deviation value from the data obtained during a certain period. This threshold is set in the alarm field of EPICS PV. In every 10 seconds, the CSS alarm monitors whether the current data is anomalous.

New Measurement System Software

We developed a new panel for temperature measurement system based on Python, using matplotlib which is a standard library for drawing graphs in Python. We also used Tkinter, a standard library for building

and manipulating GUIs in Python.

- Data is packed every hour and saved as a text file.
- Functionality of selecting PV by type and place
 - Display speed for data of large amounts or
- Iong period

one EPICS IOC.

 Operability for multiple data display

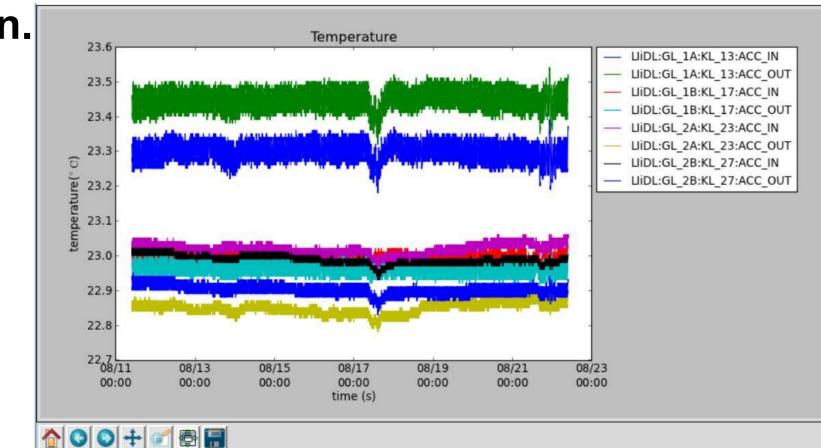


Fig. 9: Image example of the new archiver data viewer for managing temperature and humidity.

Summary and Future Plan

- By using the newly developed software, we have been able to monitor the temperature and humidity of various devices affecting the beam operation and quickly detect defects of the measurement data.
- Usability of the panel during operation was drastically improved.

< Plan >

- Calculation of the more appropriate alarm threshold by the test during daily beam operation
- Detecting the defects of the status for other subsystems (rf phase, magnet, etc.) by introducing this alarm system

We will contribute to the daily stable beam operation of the injector Linac through the quick detection of anomalous temperature and humidity fluctuation for the large number of Linac control equipment.