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Abstract 
FEL tuning and optimization within the OCELOT 

framework [1, 2] has been implemented in 2015 and has 
been since used for SASE pulse energy optimization at 
FLASH [3] and later at LCLS [4], as well as injection 
efficiency maximization in the Siberia-1 storage ring [5]. 
For the European XFEL [6] commissioning purposes the 
code was considerably improved and additional set of 
tools has been introduced. Here these tools and experi-
ence of their use during the European XFEL commission-
ing and initial operation will be presented. Future devel-
opment directions will be outlined. 

INTRODUCTION 
Tuning of performance parameters  such as photon  

pulse energy, beam pointing, or spectral width, are a con-
siderable part of daily FEL operation. When done manual-
ly, such tuning is lengthy as tedious. Moreover, it has to 
be repeated often due to limited machine reproducibility. 
While tuning the whole machine might require human 
expertise, tuning a particular subsystem using a limited 
number of actuators can be done automatically by maxim-
izing or minimizaing a certain objective function with  
standard functional minimization methods. Such approach 
was implemented for SASE tuning ([3,5,7]). The diffucul-
ty in this approach lies primarily with processing (averag-
ing) of detector data, defining hardware parameter limits, 
identifying the most effective control parameters, and 
selecting the objective function. This approach was ex-
tended to minimizing arbitrary objective functions, and an 
appropriate GUI was created. Examples of use of such a 
generic optimizer are given below. 

Optimization based on function minimization typically 
results in significant changes of the objective function 
during the optimization process. So, a Nelder-Mead  op-
timization of the SASE pulse energy usually leads to a 
significant signal drop before the optimum level is 
reached. This approach is thus not compatible with beam 
delivery to the users. It turned out that the method pro-
posed in [8] (also implemented in OCELOT under the 
name ‘adaptive feedback’), based on the slow adjustment 
of the orbit based on recent pulse energy history, can 
work simultaneously with user operation and results in 
significant pulse energy improvement. 

Other tools – dispersion and orbit correction, generic 
correlation tool, and an on-line optics model, were also 
added to the software suite and are briefly discussed in 
what follows. 

All the examples are drawn from the operation of the 
European XFEL (see Fig. 1), which has been successfully 
commissioned and is now in operation in Hamburg [9]. 

 

 
Figure 1: Schematic layout of the European XFEL beam 
distribution. 

 

THE GENERIC OPTIMIZER 
The Generic Optimizer is the next generation of the 

SASE optimizer developed for FLASH [7], and is de-
scribed in this section. While initially the functionality of 
running through a sequence of minimization steps auto-
matically and deciding on the stopping criteria was envis-
aged, presently the functionality is limited to a single 
optimization step, but an advanced GUI for setting that 
optimization is provided. Deciding on the sequence of 
steps is presently left to the operator. Command-line-
based fully automated optimization tool is available, but 
rarely used. The optimizer was specifically designed to 
facilitate ad-hoc tuning and optimization of arbitrary 
subsystems, which could be expected  during commis-
sioning.  

Interface to Control Systems 
The architecture of OCELOT allows easy interfacing to 

different control systems by inheriting from the Machin-
eIterface class and implementing the desirable API (get-
ting and setting of scalar and vector data, definition of the 
photon pulse energy readout, definition of beam position 
and beam loss measurements). Implementations using 
pyDOOCS [10] and  PyEpics [11] are available.  

Optimization Algorithm and Noise Reduction 
OCELOT extensively uses Python's NumPy (Numeri-

cal Python) [12] and SciPy (Scientific Python) [13] librar-
ies, which enables efficient numerical computations with-
in Python and gives access to various mathematical and 
optimization methods. The Generic Optimizer extensively 
uses the Nelder-Mead algorithm [14], which is included 
in the SciPy package. To deal with the photon pulse ener-
gy signal fluctuation which can “confuse” the optimiza-
tion method, two steps are taken. First is averaging of the 
objective function. The GUI allows to choose the number 
of objective function readouts and time delay between 
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readouts. Most of the signals at the European XFEL ac-
celerator are available with a 10 Hz repetition rate, so 
averaging over 10 readings takes  1 s. This approach is 
used for SASE optimization. In other cases the objective 
function signal is usually more stable and  does not re-
quire averaging. Second, setting the initial simplex size 
well above the noise level helps the optimization to con-
verge to the proper value. This situation is illustrated in 
Fig. 2, where a simulation of a noisy Gaussian signal 
minimization is shown. Nelder-Mead method with a small 
initial simplex size (red curve) fails to find the minimum, 
in contrast to the method that uses a larger initial simplex 
(green curve).  Generic Optimizer allows to define the 
size of the multidimensional simplex (i.e. initial step for 
each device) in each dimention individually. 

 
Figure 2: Objective function vs. actuator (blue curve, 
lower axis). Objective function vs. iteration number for 
different initial steps (red and green curves, upper axis). 

GUI and the Objective Function Selection 
The Generic Optimizer GUI is shown in Figs. 3 and 4. 

Device names can be added to the actuator panel via drag-
and-drop. Device limits are important to provide initial 
guess on the parameter range where the optimum is 
sought. Fig. 4 shows the objective function and alarm 
setup panel. The alarm signal pauses the optimization if 
the corresponding value is out of range. In most cases, the 
alarm signal is generated by a charge monitor in a beam 
dump section. If the machine protection system (MPS) 
blocks the beam, the optimization will be automatically 
paused until the charge monitor is  in the allowed range. 
Two options for creating objective functions are available: 
GUI-based and script-based. In the GUI-based approach 
he operator can set up to 5 devices/signals as input pa-
rameters (drag-and-drop functionality is supported as 
well) and write an expression for objective function. Vec-
tor signals are also supported. In the script-based ap-
proach, a text editor opens from the optimizer GUI and 
the objective function can be coded in Python with 
PyDOOCS  or the OCELOT machine interface API, 
without any limitations. 

Saving and loading configuration files (objective func-
tion, set of knobs, device limits and so on) is possible. 
Examples of using the Generic Optimizer for various taks 
are given in what follows. 

Dispersion Minimization 
In additional to standard dispersion correction ap-

proaches (e.g. response-matrix-based), the dispersion 
minimization can be performed with the Generic Opti-
mizer, especially if the correction in a small part of the 
machine is desired.The objective function  is then as fol-
lows: 

1. Read the beam position in selected BPMs  
2. Change the beam energy 
3. Read the new beam position 
4. Restore the beam energy 
5. Calculate the dispersion, return the rms value 

 
Figure 3: The generic optimizer GUI and dispersion op-
timization after the laser heater. 

In Fig. 3 an example of dispersion minimization after 
the laser heater (LH) using two dipoles is shown. The 
correction time is approximately 1 minute. 

 
Figure 4: Objective function and alarm selection. 

Orbit Distortion Compensation with Aircoils 
The so-called aircoils in the undulator section compen-

sate residual undulator field integrals, which depend on 
the undulator gaps. Magnetic measurements on a stand 
give good but often insufficient accuracy of the integrals 
compensation,  and beam-based orbit distortion compen-
sation with aircoils is needed. Before a tool for updating 
aircoil tables with beam-based measurements was in op-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEAPL07

Feedback Control and Process Tuning
WEAPL07

1039

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



eration, such correction was done with the generic opti-
mizer. 

Beam Loss Minimization 
As a part of the MPS, the  Beam Loss Monitor (BLM) 

system ([15]) detects the electron beam losses, and the 
beam delivery is inhibited if a certain threshold is exceed-
ed. Reduction of the beam losses is an important step 
during the accelerator start-up. For the European XFEL, 
even in commissioning stage the beam losses could be 
reduced relatively easily by manual steering of the orbit. 
In some cases, such task was easier to accomplish with 
the optimizer. The objective function, in that case, is a 
combination of the BLM and the BPM signals so that the 
optimizer tries to reduce the losses keeping a reasonable 
orbit.  

Photon Pulse Energy Maximization 
The photon pulse energy maximization is the primary 

goal of the Generic Optimizrer, and is extensively used 
for the European XFEL. Fig. 5 shows an example of SA-
SE tuning using 4 quadrupoles in the so-called Injector 
DogLeg section. To make the software more generic, a 
minimization problem is always assumed, so the signal 
inversely proportional to the photon detector readout is 
used. The SASE level in the case shown in Fig. 5 in-
creased from 100 μJ to 240 μJ. Generally, arbitrary pho-
ton pulse energy units are shown since several readout 
channels from several detectors with potentially changing 
calibration could in principle be used. This makes later 
statistical analysis of tuning data complicated and should 
be avoided in the future. 

 
Figure 5: SASE tuning with 4 quads in the injector dogleg 
section. SASE level increased from 100 uJ to 240 uJ. 
Many inactive devices are seen in the actuator panel.  

The most frequently used optimization procedure is the 
photon pulse energy maximization with orbit launch con-
ditions in the undulators. Fig. 6  shows a SASE tuning 
example with 4 correctors. In the examples shown averag-
ing over 50 SASE detector readings was used with a time 
delay of 0.1 s between readings.  

 
Figure 6: SASE tuning with 4 correctors in front of the 
undulator section. 

ADAPTIVE FEEDBACK 
 

 
Figure 7: Example of adaptive feedback during European 
XFEL operation. Lower right corner shows the GUI fea-
turing the current reference and measured orbit, and the 
photon pulse energy monitor. 

A typical optimization of the photon pulse energy with 
a Nelder-Mead simplex method results in large variation 
of the SASE signal and is generally not compatible with 
beam delivery to the users. To provide optimization sim-
ultaneously with the beam delivery, and especially to 
address the need to periodically retune the machine dur-
ing the beam delivery (since the parameter drifts cause the 
photon pulse energy to drop with time),  we implemented 
the “adaptive feedback” method described in [8]. When 
such feedback is running, the photon pulse energy and the 
orbits  are stored, and the orbit corresponding to the best 
photon pulse energy is taken as reference  (more specifi-
cally, the average over orbits above 90s percentile photon 
pulse energy level, over 300 to 500 latest pulse energy 
measurements). The orbit correction to that reference 
orbit is then periodically performed (with a standard re-
sponse-matrix-based method),  usually with the 4 launch 
correctors only. Such feedback proved very useful in the 
initial stage of the European XFEL operation. An example 
is  shown in Fig. 7. 
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CORRELATION TOOL 
In the spirit of data-centric control software, a generic 

correlation tool was introduced. So, on-line plot of orbit 
correlation with energy gives a real-time dispersion dis-
play (Fig. 8). 
 

 
Figure 8: Correlation tool showing orbit-energy correla-
tion (dispersion). 

ORBIT AND DISPERSION CORRECTION 
For the sake of providing a complete set of control tools 

within OCELOT, an orbit and dispersion correction tool 
following a standard response-matrix-based approach was 
developed and is in operation at the European XFEL (see 
Fig. 9.). 
 

 
Figure 9: Orbit and dispersion correction tool. 

ON-LINE OPTICS MODEL 
An on-line optics model (currently using design single-

particle optics, calculated with OCELOT) was introduced. 
The machine parameters  – magnet strengths, accelerating 
voltages and phases – are read out on-line from the con-
trol system and fed into the OCELOT optics model. Mod-
el or measured Twiss parameters at selected locations can 
be used, and the optics is calculated. Then, magnet and 
other settings can be changed in the GUI, and projected 
optics changes seen (see Fig. 10).  Such a tool could be of 
some use to operators or machine physicists to get the 
impression of how various knobs influence the machine, 
but the real long-term goal of this development is towards 
bridging the gap between simulation and operation, so 
that the amount of empirical tuning is minimized and 
beam physics models can be increasingly employed in 
machine set-up . The first step in this direction is to iden-
tify where the simulations diverge from measurements 

delivered by diagnostics (emittance, bunch length, optics). 
Steps towards advanced high-fidelity on-line simulations 
with all physics effects included are being taken (see 
[16]). 

 

 
Figure 10: On-line optics monitor. 

OUTLOOK 
Empirical optimization methods have been extensively 

used during commissioning and initial operation of the 
European XFEL. A mixture of model-free and model-
based methods  such as the adaptive orbit/photon pulse 
feedback proves extremely useful and more advantageous 
compared to purely empirical methods. Boosting both 
statistical methods and accelerator model fidelity for 
operation purposes with the goal of fullest possible auto-
mation of XFEL operation is the focus of ongoing devel-
opments.  Controls infrastructure issues – specifically 
handling of increasingly large amounts of data – has to be 
addressed too.  Statistical or machine learning (ML) 
methods are to be better exploited. Such methods are 
better understood  for pattern recognition-type problems 
such as image and speech recognition, spam classifica-
tion, medical treatment or economic behaviour  analysis, 
rather than control-type problems. The ML methods have 
advanced greatly in the past decades, benefiting from 
growing computing power. ML approaches are translata-
ble to the field of physics data analysis, and have  to some 
extent been pioneered in physics applications. Especially 
Astronomy and Particle Physics benefit from such meth-
ods greatly ([17,18]), where obscure patterns (faint ob-
jects,  tracks of decaying particles ) are searched for in a 
vast amount of data delivered by experimental instru-
ments. With increasing data rates, X-ray science such as 
single-particle imaging also heavily relies  on advanced 
statistical methods ([19]). ML methods for accelerator 
controls are gaining popularity (see e.g. [20]), with the 
focus on more efficient dealing with huge amounts of 
sensor data. In the context of control, ML methods could 
be used for decision-making (e.g. based on the decision 
tree approach [21]), but the hurdle of making ML systems 
more efficient than human operators is difficult to take. 
The usual drawback of many ML methods is that algo-
rithms are trained to produce “black box” models that 
give little insight into physic and often need retraining 

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEAPL07

Feedback Control and Process Tuning
WEAPL07

1041

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



when the context changes. Sometimes statistical analysis 
produces results which could be trivially arrived at by 
other means such as talking to a human expert. Some 
statistical analysis of FEL performance data illustrating 
these issues is presented in [6]. Our point of view is that 
for XFEL operations ML methods are probably unavoida-
ble to reach ultimate facility performance, but should be 
employed on the parameter space restricted by beam 
physics models. To this end, both high-fidelity high-
performance accelerator physics models and advanced 
ML methods should be pursued.  It is also not to be for-
gotten that advanced control methods can not replace 
sound hardware and software engineering. 

Another important direction is looking for synergies be-
tween XFEL and synchrotron light source tuning ap-
proaches ([22]), which has significance at DESY in con-
nection with the Petra IV upgrade activities [23]. 
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