
 Tm SERVICES: AN ARCHITECTURE FOR MONITORING AND
CONTROLLING THE SQUARE KILOMETRE ARRAY (SKA) TELESCOPE

MANAGER (Tm)*
M. Di Carlo †, M. Canzari, M. Dolci, INAF Osservatorio Astronomico d’Abruzzo, Teramo, Italy;

R. Smareglia, INAF Osservatorio Astronomico di Trieste, Trieste, Italy;
D. Barbosa, B. Morgado, J.P. Barraca, Instituto de Telecomunicações, Campus Universitario de

Santiago, 3810-193 Aveiro

Abstract
The SKA project is an international effort (10 member

and 10 associated countries with the involvement of 100
companies and research institutions) to build the world’s
largest radio telescope. The SKA Telescope Manager
(TM) is the core package of the SKA Telescope aimed at
scheduling observations, controlling their execution, mon-
itoring the telescope and so on. To do that, TM directly
interfaces with the Local Monitoring and Control systems
(LMCs) of the other SKA Elements (e.g. Dishes), ex-
changing commands and data with them by using the
TANGO controls framework.

TM in turn needs to be monitored and controlled, in or-
der its continuous and proper operation is ensured. This
higher responsibility together with others like collecting
and displaying logging data to operators, performing
lifecycle management of TM applications, directly deal -
when possible - with management of TM faults (which
also includes a direct handling of TM status and perfor-
mance data) and interfacing with the virtualization plat-
form compose the TM Services (SER) package that is
discussed and presented in the present paper.

PRINCIPLE OF WORK
The principle that drove the development of the present

architecture is to study the best practises and known ar-
chitectures that could solve the problems highlighted by
the TM and SER requirements and reuse those concepts
whenever possible. This means that only if there are no
proven solutions then a new concept or pattern would be
developed.

RESPONSIBILITIES
From the requirements analysis (done with the help of

the entire TM in the numerous discussion held) it has
been extracted the main system’s functions that are de-
scribed in the use cases document.

They can be summarized in the following list:
 TM generic monitoring and fault management in or-

der to detect internal failure and gather TM perfor-
mance;

 TM lifecycle management in order to manage the
versions of the TM and the TM applications which
includes: configuration of TM software applications,

starting, stopping and restarting of TM software ap-
plications, update and downgrade of TM software
applications;

 TM Logging, which includes the control of the desti-
nation of log messages, the transformation of the
message (if required) and the query GUI;

 Controlling of the virtualization system, according to
the interface provided by the LINFRA (local infra-
structure) team (“Instituto de Telecomunicações”,
Portugal, Lisbon).

Another important function of the system is the aggre-
gation of the TM health status and the TM State (of the
various TM applications) and reporting it to the Operator.
This function can be considered an application of the
current architecture.

CONTEXT
The TM Services take place in the middle between the

domain logic and the infrastructure. In particular, the
Figure 1 explains the above concept with a layered struc-
ture:
 Domain/Business Layer: functional monitoring and

controlling of business logic performed by each ap-
plication [1, 2];

 Services Layer: Monitors and controls processes on a
generic level (not functionality) like web services,
database servers, custom applications [3];

 Infrastructure Layer: Monitors and controls virtuali-
sation, servers, OS, network, storage.

Figure 1: TM SER context.

ENTITY DECOMPOSITION
The entity managed by the TM SER package can be

summarized in Figure 2. In particular the central block of
the diagram is the Entity, that is the main data wherewith
every TM Services application refer to. It can be
 a monitored process, that is an OS process that needs

to be monitored and controlled or ___

* Work supported by Italian Ministry of University and Research (MIUR)
† matteo.dicarlo@inaf.it

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA207

Experiment Control
TUPHA207

943

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

 an application, that is an aggregation of Moni-
toredProcess selected according to a particular ver-
sion with the block LogicalComposition or

 a monitoring activity, that is a process that monitors
an entity and produces monitoring data or

 the virtualization, that is a generic term indicating a
virtualization system (Openstack, Cloud system and
so on) or

 a vResource, that is a resources managed by the vir-
tualization including CPU, storage, and networking
or

 a Template, that is a description of a set of instances
(servers, VMs or containers) needed to run a particu-
lar configuration of an application.

Figure 2: Entity decomposition.

QUALITIES FOR TM
The main quality that drove the development of the

present architecture was the maintainability intended as
availability (reliability and recovery), modifiability, testa-
bility and more in general the ability of a system to cope
with changes.

Concerning availability, many tactics are implemented
in the present architecture and in particular:
 Detecting fault: ping, monitoring activities, heartbeat

and timestamp;
 Recovering from fault: active redundancy, software

upgrade and reconfiguration;
 Preventing faults: predictive model and transaction

(when accessing to repositories).
The modifiability is reached in the following areas of

the system: monitoring activities, lifecycle scripts, log-
ging rules and fault rules. In particular it has been in-
creased cohesion and reduced coupling so that it is easy to
add new version of an application and monitoring activi-
ties.

The testability is reached by limiting the complexity of
the system. In fact, it is easy to add a new monitoring
activity to the system so that, if there is a new test to per-
form, it is possible to add a monitoring point for it that
can represent a state, a measure or a simple message.
Once it is available the specific monitoring point needed,
it is also easy to generate an event to intercept the particu-
lar problem raised with the test.

MODULES DECOMPOSITION
Figure 3 shows the decomposition of the system into

units of implementation and highlights the distinction
between off the shelf software and built software. In yel-
low, it is shown the collaboration with the TM LINFRA
(local infrastructure) team (“Instituto de Telecomunica-
ções”, Portugal, Lisbon) for the virtualization service.

Figure 3: Module decomposition.
The lifecycle Manager (LM) realizes the lifecycle man-

agement that is the ability to control a software applica-
tion in the following phases of its lifetime: configuration,
start, stop, update, upgrade or downgrade (version con-
trol). The LM engine (Off the shelf) execute the lifecycle
scripts directly into the client host (where the application
run) and realizes a specific phase of the application life-
time.

In particular, the first phase is the configuration, which
is the ability to set all the parameter of a software applica-
tion in order to start the product on the second phase (the
configuration phase is the preparation of the start phase).
Once the application has started, it is possible for a user to
work with it. In the start phase, it is very important to
consider the application typology (os service, web appli-
cation, desktop application and so on). In fact, if the ap-
plication is on web (web app), for instance, then the start
phase correspond to the start of the web server and per-
haps the database. Only after that (and after a test phase),
a user can work with it.

An application can also be stopped or killed if there is
the need of it, for instance because an application goes
offline or there is a new version of it, either resulting from
the standard update cycle or from a redesigning stage
triggered by new requirements released over the SKA
life-time.

All this activity can be done through an IT automation
tool like puppet [4], chef [5], ansible [6] and so on in
cooperation with other sub-elements.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA207

TUPHA207
944

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

The Generic Monitoring is composed by a software
system monitor (SSM) plus some specific monitoring
activities in order to monitor:
 network services (SMTP, POP3, HTTP, NNTP,

ICMP, SNMP, FTP, SSH);
 host resources (processor load, disk usage, memory,

etc.);
 any hardware (like probes for temperature, alarms,

etc.).
The SSM is a software component used to monitor re-

sources and performance in a computer system: for every
node of the TM network, there is going to be a local agent
that is able to collect information from the operating sys-
tem and from the local processes of TM applications. The
local agent executes one or more monitoring activities
and report the collected data to the SSM engine.

The SSM is also responsible of the aggregation of the
TM health status and the TM State (of the various TM
applications). This responsibility can be solved with the
development of specific monitoring activities both for the
local agent and for the server engine that collect state
information (client) and aggregate them (server).

Every information collected by the monitoring system
has to be reported to the Operator in order to give a clear
picture of the functional and non-functional view of the
system. For this reason, it has been developed the TM
monitor that is a Tango Device server (www.tango-
controls.org) for reporting all the monitoring information
into the control system (see Figure 4).

Figure 4: Reporting to Operator.

The fault rules represent the fault management activity

that uses the SSM and the LM in order to perform its duty
that is:
 Detection that is the ability to understand if in the

system there is a fault;
 Isolation, that is the ability to isolate a fault under-

standing where it is;
 Recovery that is the ability to recover the situation.
A monitoring activity together with alarm filtering

(usually available in any software system monitor) realiz-
es the detection activity. The same monitoring activity

together with log information realizes the isolation while
the recovery is essentially a control operation that
TM.LMC can do: for instance an online action, which is a
lifecycle command (reconfigure, restart, etc.) or an offline
activity like raising a modification request for the soft-
ware maintenance.

A good logging service should focus on how many in-
serts can the architecture support (throughput) and how
the system manages the growth of event data. In the mod-
ule decomposition, the distinction made highlights two
different modules, one called Logging forwarding rule
and one called Logging Service (LS). The detail of the
logging architecture are explained in the next section of
the present paper.

The Service GUI is the entry point for the TM Services
software package and will allow the Operator to access all
the functionalities provided from one single UI. In order
to develop it the focus would be to make the user work
with a limited number of steps to reach his various func-
tionalities and on a high integration that is the user may
need or want to compose his specific GUI.

Because of the high integration guideline, it is crucial to
take part of the construction of the tango web application
(Feature Request # 6 – TANGO web application) that is
an effort in refactoring of the generic TANGO web app to
be an open platform (third parties will be able to imple-
ment plugins for the platform to resolve their needs) [7].
Therefore, the development of the Service GUI will cor-
respond to the construction of some plugins into the
TANGO web platform.

It is very important to notice that Monitoring activities,
fault rules, Lifecycle scripts and Logging forwarding
rules are separated from the execution engine (SSM vs
Monitoring activities, SSM vs fault rules, Lifecycle Man-
ager vs Lifecycle scripts, Logging service vs Logging
forwarding rules) in order to increase the modifiability of
the system. This also highlights the Client/Server archi-
tecture of the system.

RUNTIME VIEW
Figure 5 highlights the runtime components of the sys-

tem and their relations.
In green, it is highlighted the runtime components of

the logging service with a three entities architecture: the
LS data repository, the LS engine and the LS forwarder.

The LS forwarder is a service located near the TM ap-
plications that give the possibility to forward the message
to the central database cluster according to certain rules
(logging forwarding rules).

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA207

Experiment Control
TUPHA207

945

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 5: Runtime view.

The LS Engine is responsible for collecting and storing
the log message (transformed by the forwarder) into the
data center together with the ability to receive query from
the external world and answer in a timely manner.

According to the principle of work exposed above,
there are many best practises and possibilities for this
service. In particular, it is possible to use simple files
(MeerKAT, see for example [8]) or a relational DB
(ASKAP, see for example [9]) or a NoSql DB (for in-
stance LHC, see for example [10] with ELK [11]). A
performance evaluation of the three possibilities has been
made, and focusing on fast write and centralized solution,
the best solution was the use of ELK.

In blue, it is highlighted the runtime components of the
SSM that is composed by:
 the SSM Core, responsible for the interaction with

the SSM Agents,
 the Fault Engine, responsible of the execution of the

fault actions (if required),
 the Notification System to notify the SER Operator

of any information and
 two repositories, the FM repository, responsible of

the storage of the fault rules, and the MonData Re-
pository, for the archiving all the monitoring data.

In orange, there is the LM runtime components that are
the LM Core, the LM repository and the LM Service.

The LM Service retrieves from the LM Core the specif-
ic lifecycle script assigned to the particular TM applica-
tion and applies it locally so that the action requested is
performed. It is also possible to have an agentless lifecy-
cle manager like for instance Ansible (see [3]). The LM
repository contains all the versioned lifecycle scripts
developed and it only interact with the LM Core.

It is also important to notice that the Service GUI inter-
acts with all the principal components of the SER mod-
ules together with a configuration DB (to maintains in-
formation like geographical information, entities infor-
mation, version information, configuration information

and so on) and the AAA (Authentication And Authoriza-
tion) package.

VIRTUALIZATION SERVICE
The Virtualization block manages resources

(vResources) assigned to a specific configuration of an
entity (see Figure 2 for the entity decomposition). Usual-
ly, every entity has associated a template that is a descrip-
tion of the set of instances (servers, VMs or containers)
with an SLA (Service Level Agreement), user ACLs (Ac-
cess Control Lists) and network ACLs needed by the
entity.

A vResource can be:
 a vResourceCompute, that is a Virtualized computa-

tional resources (an Hardware, a vHardware, a Con-
tainer or a Virtual Machine);

 a vResourceNetwork, that is a Virtual network for a
cloud application;

 a vResourceStorage, that is a virtual storage for a
cloud application.

The Template and the vResource blocks have a state as-
sociated that is collected and managed by the SSM.

Figure 6 shows the data model for the use of the virtu-
alization system made for TM.

Figure 6: Virtualization data model.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA207

TUPHA207
946

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

CONCLUSION
This paper has discussed the architecture of TM SER
system. It is important to highlight that the review phase
is ongoing and some evolution and refinement is ex-
pected.

ACKNOWLEDGEMENT
This work is supported by the Italian Ministero

dell'Istruzione, dell'Università e della Ricerca.

REFERENCES
[1] Swaminathan Natarajan, Domingos Barbosa, Joao Paulo

Barraca, Alan Bridger, Subhrojyoti Roy Choudhury,
Matteo Di Carlo, Mauro Dolci, Yashwant Gupta, Juan
Guzman, Lize Van den Heever, Gerhard LeRoux, Mark
Nicol, Mangesh Patil, Riccardo Smareglia, Paul Swart,
Roger Thompson, Sonja Vrcic, Stewart Williams, SKA
Telescope Manager (TM): Status and Architecture Over-
view, Proc. of SPIE Vol. 9913, 991302, doi:
10.1117/12.2232492

[2] M. Dolci, M. Di Carlo, R. Smareglia 2016: Challenge and
strategies for the maintenance of the SKA telescope man-
ager, Proc. of SPIE Vol. 9913, 99132J, doi:
10.1117/12.2231642

[3] M. Di Carlo, M. Dolci, R. Smareglia, M. Canzari, S. Riggi
2016: Monitoring and controlling the SKA telescope man-
ager: A peculiar LMC system in the framework of the
SKA LMCs, Proc. of SPIE Vol. 9913, 99133S, doi:
10.1117/12.2231614

[4] PUPPET, http://puppet.com
[5] CHEFF, http://www.chef.io
[6] ANSIBLE, http://www.ansible.com
[7] Justin L. Jonas, MeerKAT-The South African Array With

Composite Dishes and Wide-Band Single Pixel Feeds,
Proceedings of the IEEE (Volume: 97, Issue: 8,
Aug.2009), Page(s): 1522 - 1530, DOI:
10.1109/JPROC.2009.2020713.

[8] S. Johnston et al., Science with ASKAP The Australian
square-kilometre-array pathfinder, Exp Astron (2008)
22:151–273, DOI 10.1007/s10686-008-9124-7

[9] S. Chatrchyan et al., (CMS Collaboration), Search for
Signatures of Extra Dimensions in the Diphoton Mass
Spectrum at the Large Hadron Collider, Phys. Rev. Lett.
108, 111801 - Published 12 March 2012,
DOI:https://doi.org/10.1103/PhysRevLett.108.111801

[10] ELASTIC, https://www.elastic.co/
[11] TANGO, http://www.tango-

controls.org/community/roadmap/

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA207

Experiment Control
TUPHA207

947

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

