
ENHANCING THE MxCuBE USER INTERFACE BY A FINITE STATE
MACHINE (FSM) MODEL

Ivars Karpics, Gleb Bourenkov, Thomas Schneider,
European Molecular Biology Laboratory (EMBL) Hamburg Unit

also at DESY, Notkestrasse 85, 22607, Hamburg, Germany

Abstract

The acquisition of X-ray diffraction data from macro-
molecular crystals is a major activity at many synchrotrons
and requires user interfaces that provide robust and easy-
to-use control of the experimental setup. Building on the
modular design of the MxCuBE beamline user interface, we
have implemented a finite state machine model that allows
to describe and monitor the interaction of the user with the
beamline in a typical experiment. Using a finite state ma-
chine, the path of user interaction can be rationalized and
error conditions and recovery procedures can be systemati-
cally dealt with.

INTRODUCTION

EMBL Hamburg operates two beamlines, P13 and P14,
for macromolecular X-ray crystallography (MX) on the
PETRA III synchrotron at DESY (Hamburg, Germany). On
both beamlines, MxCuBE [1] is used as the user interface.
While in MX, a large fraction of data collections are con-
sidered as ‘measurements’ and are often conducted by non-
experts, still many data collections can be considered as
‘experiments’ in which a fine control of data collection pa-
rameters is required to obtain usable data. Both aspects
require the user interface to be robust and easy-to-use for
measurements while providing flexibility and deeper con-
trol for experiments. To make the control of the beamlines
more robust and intuitive from the user perspective, we have
embarked on describing the interaction of the user with the
beamline as a finite state machine (FSM). An FSM is a
mathematical model of a closed or open loop discrete-event
system with defined states [2]. FSM-graphs are widely used
to define, analyse and control the functioning of system. Ap-
plications include software engineering and experimental
control systems. For example, state graphs are used in Large
Hadron Collider experiments at CERN [3, 4] and in data
acquisition system at the European X-ray free-electron laser:
Karabo SCADA framework [5]. For the case of control-
ling an experiment/measurement on an MX beamline, the
modularity and clean separation between low-level hardware
access and the graphical interface within MxCuBE allows
implementing an FSM model into the main experimental
cycle. Important features of using an FSM are the ability to
have an overview of all relevant beamline components, to
keep track of user actions, and to guide users and/or beamline
staff in case of failure or alarm.

USE CASE
A highly-simplified typical user interaction with a macro-

molecular crystallography (MX) beamline for the collection
of diffraction data includes mounting the sample onto a sam-
ple positioning device (goniometer), centering of the sample
with respect to the X-ray beam, setting of the data collection
parameters, triggering of the data collection, execution of
the data collection which consists of rotating the sample
in the X-ray beam, and finally unmounting of the sample.
The MxCuBE graphical user interface (GUI) for MX beam-
lines contains numerous widgets to control the settings of
the beamline hardware including X-ray energy, beam atten-
uation factors, size and shape of the X-ray beam, distance
between the sample and X-ray detector, and others (Fig. 1).
To facilitate sample centering, the user interface offers a
life view of the sample and various means to position and
orient the sample. The data collection parameters are set by
entering numerical values for controlling sample rotation
speeds, exposure times etc. The many different ways of col-
lecting data on a given crystals and the interdependencies
between different - often technically high-end and thus not
ultimately stable - components of the beamline result in a
highly complex system for which stable operation is not triv-
ial to achieve. An important factor in this context is also
the fact that many users of MX beamlines are inexperienced
posing high requirements in terms of making the operation
robust and supporting recovery from errors.

FINITE STATE MACHINE
In the case of FSM, a system can be in exactly one finite

state. It can move to another state in response to defined
external inputs (stimuli). An FSM is defined as a set of states
and transitions, an initial state, and conditions for transitions.
For a typical user interaction with the experimental GUI dur-
ing an MX data collection, it is possible to indicate several
common steps (transitions in the FSM graph):

1. Sample mounting on the sample positioning device
(goniometer).

2. Sample centring.

3. Entry and validation of data collection parameters.

4. Execution of data collection.

5. Sample dismounting.

6. Returning to step 1.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA187

User Interfaces and User eXperience (UX)
TUPHA187

869

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 1: Graphical user interface MxCuBE as seen at EMBL beamline P14. In the left half, a life view of the sample
is displayed. The sample view is surrounded (clockwise from above) by controls for sample orientation and microscope
settings, controls for sample centering procedures, and widgets for controlling the size and shape of the X-ray beam (which
need to be modified to match the size of the sample). In the right half, the left section offers several tabs that allow the
definition of parameters of relevance to various data collection procedures, the middle section controls the loading and
unloading of samples and the assembly of sequences of data collection procedures, while the right section allows to monitor
(and partly control) general properties of the synchrotron, the experimental environment etc. At the bottom of the screen
logging information is displayed.

Figure 2: State graph of a user interaction during a macromolecular crystallography data collection. Circles represent FSM
discrete states. Normal states are shown in white, while states painted in red are error states and require actions to return
system to a normal state. Blue arrows point to Sample mounted state and are executed automatically, red arrows indicate
the request from a user to unmount a sample. FSM graph includes also Beam alignment state where several xray beam
alignment procedures are allowed.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA187

TUPHA187
870

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)



Based on these transitions, a state graph was created
(Fig. 2). The graph originates from the Start node. If there
is a sample mounted on the goniometer, then the state is
changed to the Sample mounted state, otherwise to the Sam-
ple not mounted state. From the Sample not mounted state
it is possible to reach the Sample mounted state via Sam-
ple mounting state (an attempt to mount a sample). In case
the of successful mounting, the system reaches the Sample
mounted state while for a failed mounting procedure it re-
sorts to the Sample not mounted state. The next state, Sample
centered, is reached from Sample mounted state via three
different transitions aka positioning methods (manual, auto-
matic optical, or xray based centering). To reach the state in
which data are actually collected - Collection running - the
system has to go through several preparatory stages. These
include reaching a set of Valid input parameters, arriving in
a set of Accepted conditions, and leaving the Confirmation
window displayed state with a positive confirmation. To en-
sure a closed loop system most of the states have transitions
to the Sample mounted state.

IMPLEMENTATION IN THE GRAPHICAL
USER INTERFACE MXCUBE

Both P13 and P14 use MxCuBE with Qt4 graphics [6,
7] as an experimental graphical user interface. MxCuBE is
written in Python and is logically divided into a hardware
access and a graphical representation layer. The hardware
access level is called ‘Hardware Repository’ and contains
a set of configurable hardware objects. The modularity of
the Hardware Repository allows sharing data across and
between hardware objects and creating complex so called
‘procedures’ to perform scans, data collections, beam center-
ing and other complex processes. We have implemented the
FSM in MxCuBE as a hardware object that can connect to
all hardware objects relevant to performing measurements
or experiments. The implementation of the FSM-graph is
defined via an yaml-file describing graph nodes, transitions
and conditions. Transitions are triggered upon request when
the conditions as evaluated by individual hardware objects
are fulfilled. For example, the sample_is_loaded condition
(Fig. 2) is broadcasted by the goniometer hardware object.
For debugging purposes a window with information about
the state of the FSM is available. It contains a table display-
ing all available states, conditions and a history of states
assumed by the system (Fig. 3).

CONCLUSION AND PERSPECTIVES
We have presented an idealized Finite State Machine

model for the interaction of a beamline user with a beamline
to collect diffraction data from a crystal. While analyzing the
current implementation of the process in theMxCuBE graph-
ical user interface running on the MX beamlines at EMBL-
Hamburg, we realized the high complexity of the real-world
interaction between a user of a beamline. When restricting
the FSM-model to the steps relating to a simple measurement
on a single sample, the resulting description is helpful for the

Figure 3: Window for monitoring the FSM described in
(Fig. 2) as implemented in MxCuBE. In the matrix in the
upper part of window, each column corresponds to a state
and each row of the matrix relates to a condition that needs to
be fulfilled for a transition between two states to be executed.
For each condition, the corresponding state is indicated by a
green tick-mark (true) or a red cross (false). At the bottom,
a state history is displayed. In this example, the sample was
mounted and successfully centered: the FSM has progressed
through Sample not mounted, Sample mounting, Sample
mounted into the Sample centered state. According to the
FSM graph, the system can now progress to Valid input
parameters or to Invalid input parameters. As the condition
Data path valid is not fulfilled system is in the error state
Invalid input parameters (column 8 painted in red). To
progress towards the Data collection state, the system has
to go through the Valid input parameters state which can be
achieved by entering correct data collection path.

user of the beamline, the beamline scientist supporting the
beamline user, and for the developers of the beamline con-
trol interface. For the (inexperienced) beamline user, being
informed about the current state/current transition is useful
especially in situations in which the beamline is seemingly
idle or blocked, e.g. during a technical wait period when
a sample is robotically mounted. The clean information
about error state and - when possible - suggested recovery
procedures make the beamline user more autonomous and
reduces the need for the beamline scientist to recover the
beamline. Error situations unrecoverable by the beamline
user can also be recognized and an automatic notification
can be sent to the beamline scientist to address the problem.
For the developer, the state history provides an important
tool for debugging. Gathering statistics about the behaviour
of beamline components as seen via the states assumed and
transitions take can be used to build a knowledge base for
pin-pointing fault-causing beamline components. During
the design and implementation of the FSM, a number of

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA187

User Interfaces and User eXperience (UX)
TUPHA187

871

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



conceptual challenges surfaced. In particular, the possibility
of accessing many beamline functionalities from the same
interface-section at the same time will need be reassessed. A
hierarchical approach could be envisioned in which actions
that can be triggered by the beamline are cleanly grouped so
that only a subset of functionalities - that is less complex to
maintain in a consistent way - is accessible, while the other
functionalities are blocked. Blocked functionalities can be
easily indicated by ‘greying-out’ the respective parts of the
GUI. While the description of an entire beamline as an FSM
may be conceptually of interest, the involved effort may be
prohibitive. Nevertheless, describing subsystems as FSMs,
such as done here for the interaction of the user with the
beamline for a standard diffraction data measurement, can
be useful both for achieving a better understanding of the
needs and for optimizing procedures in terms of efficiency
and robustness.

REFERENCES
[1] J. Gabadinho et al., "MxCuBE: a synchrotron beamline control

environment customized for macromolecular crystallography
experiments", Journal of synchrotron radiation. vol. 17, pt. 5,
pp. 700–707, 2010.

[2] D. Harel, "Statecharts: a visual formalism for complex sys-
tems", Science of Computer Programming, vol 8, iss 3, pp.
231–274, 1987.

[3] F. Calheiros, P. Golonka, and F. Varela, “Automating
The Configuration Of The Control Systems Of The Lhc
Experiments”, in Proc. of ICALEPCS2007, Knoxville, USA,
October 2007, paper RPPA04, pp. 529–531.

[4] G. De Cataldo, A. Augustinus, M. Boccioli, P. Chochula, and
L. Stig Jirdén, “Finite State Machines for Integration and
Control in ALICE”, in Proc. of ICALEPCS2007, Knoxville,
USA, October 2007, paper RPPB21, pp. 650–652.

[5] B. C. Heisen et al., “Karabo: An Integrated Software
Framework Combining Control, Data Management, And
Scientific Computing Tasks”, in Proc. of ICALEPCS2013,
San Francisco, USA, October 2013, paper FRCOAAB02, pp.
1465–1468.

[6] I. Karpics, G. Bourenkov, M. Nikolova, and T. R. Schneider,
"Graphical user interface and experiment control software at
the MX beamlines at EMBL Hamburg" in Proc. of NOBUGS
(New Opportunities for Better User Group Software),
NOBUGS2016, Copenhage, Denmark, October 2016, paper
10.17199/NOBUGS2016.91, pp. 53–58.

[7] M. Cianci et al., “P13, the EMBL macromolecular crystallog-
raphy beamline at the low-emittance PETRA III ring for high-
and low-energy phasing with variable beam focusing”, Journal
of synchrotron radiation, vol. 24, no. 1, pp. 323–332, 2017.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA187

TUPHA187
872

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)


