
JAVAFX CHARTS: IMPLEMENTATION OF MISSING FEATURES

G.Kruk, O.Alves, L.Molinari, CERN, Geneva, Switzerland

Abstract
JavaFX, the GUI toolkit included in the standard JDK,

provides charting components with commonly used chart
types, a simple API and wide customization possibilities
via CSS. Nevertheless, while the offered functionality is
easy to use and of high quality, it lacks a number of fea-
tures that are crucial for scientific or controls GUIs. Ex-
amples are the possibility to zoom and pan the chart con-
tent, superposition of different plot types, data annota-
tions, decorations or a logarithmic axis. The standard
charts also show performance limitations when exposed
to large data sets or high update rates.

The article will describe how we have implemented the
missing features and overcome the performance prob-
lems.

JAVAFX CHARTING PACKAGE
JavaFX is a software platform enabling creation of rich

client applications. It includes a charting package with Pie
Chart and a set of most commonly used XY charts such as
Area Chart, Bar Chart, Line Chart or Scatter Chart. Each
chart is represented by a class and can be styled using
Cascading Style Sheets (CSS) and dedicated style classes
[1], in a similar way as all the other JavaFX components.

Although the JavaFX charting package allows develop-
ers to create sophisticated and well-looking charts that are
sufficient for typical business applications, it misses a
number of built-in features that are essential for scientific
tools used for data visualisation and analysis.

Missing Features
One missing piece of functionality is an easy, graphical

way of zooming, i.e. by drawing a bounding box with
mouse cursor. For charts containing a significant number
of points, it is usually a must have feature that users just
expect to be there.

Also, JavaFX does not provide an easy way for devel-
opers to add custom graphical elements on top of their
charts. Examples are data point annotations, lines and
rectangles defining limits, text labels or other decorations
that help in interpretation and enrich the displayed data.

Other missing features that are commonly used in the
controls domain include logarithmic scales, the possibility
of mixing different plot types on a single chart or a heat-
map chart used to display particle beam images.

Most of the aforementioned features are present in the
list of possible enhancements for OpenJFX [2] but up to
and including Java 10 there are no plans of the JavaFX
team to actually implement them.

CERN CHART EXTENSIONS

Motivation
Lacking the required functionality, we faced a choice

between either implementing it ourselves or using a 3rd
party library that would support it.

As of today, the only suitable open source library is
JFreeChart [3] in combination with FXGraphics2D [4].
The rich set of functionality offered by JFreeChart comes
with a relatively steep learning curve for its API. Most of
our non-professional software developers (like physicists
or operators) preferred to use the standard JavaFX chart-
ing package and simpler APIs that they already knew. We
wanted to avoid a hybrid approach, with JavaFX charting
used for some applications and JFreeChart for others, as
it would make long-term support and maintenance of
these applications more difficult and expensive. Since the
estimated development effort was not very high, we de-
cided to implement it, with an idea of making it open
sourced and available for the JavaFX community.

XYChartPane
The central class of the package is XYChartPane. In

several aspects, it is similar to the standard JavaFX
StackPane, which lays out its children in a back-to-front
stack, but is specialized to lay out instances of XYChart
and to manage nodes belonging to custom chart plugins
(see next section for details).

Figure 1: XYChartPane with different chart types.

The main (base) chart must be specified at the construc-

tion of XYChartPane but the additional charts, drawn on
top of each other (see Fig. 1), can be added and removed
at any moment via exposed observable list of overlay
charts.

All the overlay charts use the X-axis of the base chart.
They may also share the common Y-axis of the base chart

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA186

TUPHA186
866

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

or have their own independent ones with distinct data
ranges and drawn on either left or right side of the chart.

To make the overlay layout possible, certain features of
charts added to the XYChartPane must be deactivated.
For instance, the background is made transparent, the grid
lines and individual legends are hidden as well as title
labels. Some of these properties are configurable only on
the base chart e.g. background or grid, while the others,
such as title or legend, are configurable for all charts
together using properties of the XYChartPane.

Chart Plugins
Chart plugins, instances of XYChartPlugin class, repre-

sent add-ons to the standard charts that can be added to
the XYChartPane to interact with the chart content and/or
to insert graphical components that are rendered on top of
charts.

At the moment the extension provides the following
plugins:
 ChartOverlay - allows adding to the chart area any

instance of javax.scene.Node that will be laid out on
top of charts. Typically the plugin would be given an
instance of javax.scene.layout.Pane (e.g. An-
chorPane) containing child nodes at arbitrary loca-
tions.

 CrosshairIndicator – a cross (horizontal and vertical
line) following the mouse cursor and displaying its
coordinates.

 DataPointTooltip – a tooltip label displaying coor-
dinates of the data point hovered by the mouse cur-
sor.

 Zoomer – zooms the visible chart area to the rectan-
gle drawn by dragging the cursor. It keeps a stack of
zoom windows (X and Y ranges), allowing zoom-
out to the previous or to the origin window.

 Panner – allows dragging the visible chart area.
 XValueIndicator, YValueIndicator – a vertical and

horizontal line (respectively), indicating specified X
or Y value, with an optional text label describing the
indicated value.

 XRangeIndicator, YRangeIndicator – a rectangle
indicating vertical or horizontal range (respectively)
between specified X or Y values, with an optional
text label describing the indicated range.

The plugin can access the XYChartPane via a dedicated
observable property (set when the plugin is added to the
pane) and therefore it can register mouse or keyboard
event handlers that it should react on. For instance, the
Zoomer plugin registers a handler intercepting mouse
events to draw zoom-in rectangles and to change the X
and Y ranges at the end of the interaction.

Every plugin can provide an optional list of nodes that
should be rendered on the XYChartPane, e.g. the Zoomer
provides a javax.scene.shape.Rectangle node that is used
to draw zooming box.

Figure 2: XYChartPane with components of different
plugins.

Most of the plugins are configurable via dedicated
properties. Also all the graphical elements used by plugins
(lines, rectangles, labels, etc.) have their own style classes
and therefore can be customized in a standard way using
CSS.

NumericAxis
Along with CategoryAxis, JavaFX provides NumberAx-

is class that is used to display numerical values such as
Long, Double or BigDecimal. It contains a boolean prop-
erty called autoRanging that determines the behaviour of
the class. With autoRanging set to true, the axis automati-
cally calculates visible range and tick units based on data.
If the property is set to false, the axis relies on the range
and tick unit specified programmatically by the user.

This behaviour is incompatible with the requirements
of Zoomer and Panner plugins that need to change the
axis range programmatically but at the same time require
the axis to adjust the tick unit automatically. The Num-
berAxis class being final prevents anyone from extending
it and adding zooming and panning capabilities.

For this reason we implemented a NumericAxis class
providing all the original functionality and in addition
supporting automatic tick unit calculation with auto-range
being off. Therefore it is necessary to use NumericAxis
(rather than NumberAxis) for the Zoomer and Panner
plugins to work properly.

In addition, the NumericAxis offers few other features:
 autoRangePadding – a double property represent-

ing a fraction of the range to be applied as padding
on both sides of the axis range e.g. if set to 0.1
(10%) on axis with data range <10, 20>, the new
automatically calculated range will be <9, 21>.

 autoRangeRounding – a boolean property, indicat-
ing if the automatically calculated range should be
extended to the major tick unit value e.g. with data
range <3, 74> and major tick unit 5, the range will
be extended to <0, 75>.

 tickUnitSupplier – a property holding a strategy
(TickUnitSupplier) responsible for calculation of
major tick units, with default implementation
equivalent to the one of NumberAxis.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA186

User Interfaces and User eXperience (UX)
TUPHA186

867

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

LogarithmicAxis
In addition to the NumericAxis, we also implemented

LogarithmicAxis, with configurable logarithm base and
the number of minor ticks. An example is presented on
Fig. 3.

Figure 3: Logarithmic Y axis with base 10.

Similarly to the NumericAxis, it also supports the
zooming and panning operations.

HeatMapChart
HeatMapChart is a specialised chart that uses colours

to represent data values contained in a matrix. At CERN,
it is typically used by applications displaying beam imag-
es (like on Fig. 4) or time trends of signals, with a single
line of pixels representing a single acquisition.

Figure 4: HeatMapChart showing the LHC beam image.

The class uses its own Data type that represents the ma-
trix and allows retrieving X-Y coordinates and the corre-
sponding values.

By default, the HeatMapChart uses a rainbow colours
gradient but this can be changed using colorGradient
property to either one of the predefined gradients (e.g.
white-black, black-white, sunrise) or to a custom gradient
specified by the user.

DEALING WITH LARGE DATA
SETS

In scientific applications, it is a relatively common re-
quirement to plot signals containing large number of data
points. Some instruments at CERN measuring particle
beam properties produce waveforms with more than
100,000 data points. Physicists and equipment specialists
need to plot the entire waveform and to zoom-in to specif-
ic segments.

The JavaFX charting package performs well with series
containing up to a few thousands data points, with render-
ing time below one second (on a decent desktop comput-
er). However, drawing series containing tens of thousands
points takes several seconds, blocking the FX thread and
making the application unresponsive.

To address this issue, we developed the DataReduc-
ingObservableList, a specialised implementation of the
ObservableList interface (as used by the XYChart Series
class), performing data reduction the specified number of
most significant points. It is a wrapper over a source list
(containing all points) that triggers execution of the re-
duction algorithm on every change of the source data or
X-axis range, exposing to the chart Series reduced num-
ber of points from the current X range.

By default, DataReducingObservableList uses Ramer-
Douglas-Peucker [5] reduction algorithm that is fast and
suitable for the vast majority of cases. The reduction of
100,000 points to 500 takes around 50-60ms, preserving
the original shape of the signal. It is also possible to use
another algorithm by providing its implementation and
configuring it via a dedicated property.

CONCLUSION
The implemented extension fulfils the substantial set of

features missing in the JavaFX charting package, enabling
its usage for all controls applications.

All added components follow JavaFX design principles
and API style, making their usage simple and intuitive.

The application of data reduction algorithm addresses
the performance issues, allowing visualisation of large
data sets flawlessly.

Currently we are in the process of making the extension
open sourced.

REFERENCES
[1] CSS Reference,

https://docs.oracle.com/javase/8/javafx/api/javafx/sce
ne/doc-files/cssref.html#charts

[2] OpenJDK issue tracker, https://bugs.openjdk.java.net
[3] JFreeChart, http://www.jfree.org/jfreechart
[4] FXGraphics2D, http://www.jfree.org/fxgraphics2d
[5] Ramer-Douglas-Peucker algorithm,

https://en.wikipedia.org/wiki/Ramer%E2%80%93Do
uglas%E2%80%93Peucker_algorithm

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA186

TUPHA186
868

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

