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Abstract

The European Spallation Source will produce more data
than existing neutron facilities, due to higher accelerator
power and to the fact that all data will be collected in event
mode with no hardware veto. Detector data will be acquired
and aggregated with metadata coming from sources such as
sample environment, choppers and motion control. To ag-
gregate data we will use Apache Kafka with FlatBufers
serialisation. A common schema repository deines the
formats to be used by the data producers and consumers.
The main consumers we are prototyping are a ile writer for
NeXus iles and live reduction and visualisation via Mantid.
A Jenkins-based setup using virtual machines is being used
for integration tests, and physical servers are available in an
integration laboratory alongside real hardware. We present
the current status of the data acquisition pipeline and results
from the testing and integration work going on at the ESS
Data Management and Software Centre in collaboration with
in-kind and BrightnESS partners.

INTRODUCTION
The European Spallation Source (ESS) is a spallation

neutron source currently being built in Lund, Sweden. It
will operate as a user facility ofering a high brightness
neutron beam in long pulses that can be tailored for adjusting
resolution and bandwidth [1].

Located in Copenhagen, Denmark, the ESS Data Manage-
ment and Software Centre (DMSC) is developing software
for the experiment data acquisition pipeline in collaboration
with the Science and Technology Facilities Council (STFC),
as an in-kind partner, and Paul Scherrer Institut (PSI) and
Elettra as part of the BrightnESS project [2]. This pipeline
will transport and transform data from sources in the instru-
ment, including neutron detectors and EPICS servers, to
software performing tasks such as live experiment feedback
and ile writing. In the following sections, we discuss the
architecture and components of the data acquisition pipeline,
their current status and the tests being used to evaluate them,
and present the conclusions and plans for future work.

∗ This work is partially funded by the European Union Framework Pro-
gramme for Research and Innovation Horizon 2020, under grant agree-
ment 676548.† afonso.mukai@esss.se

Event Mode Acquisition
Instrument data at ESS will be acquired mainly in event

mode, i.e., each neutron that is detected generates a pair
of pixel identiier (ID) and timestamp values, where the ID
corresponds to the location of the neutron in the detector. In
this approach, in contrast with acquisition in histograms, the
list of individual events is stored for subsequent experiment
steps, such as data reduction and analysis; this allows the
user to create histograms using diferent criteria, if desired.
In addition, there will be no hardware veto for automatically
stopping acquisition in case of chopper phase errors. Ac-
celerator pulse information and the chopper top dead centre
(TDC) signals will be acquired and attached to the datasets,
allowing iltering to happen during the data reduction step.

Due to the high brightness beam and event mode acquis-
ition, experiments at ESS will generate large volumes of
data. Table 1 shows anticipated neutron event rates for some
ESS instruments [3]. The proposed architecture for the data
acquisition pipeline addresses these requirements with par-
allelisation and a clustered approach to data aggregation.

Table 1: Anticipated Neutron and Detector Rates for Some
Early ESS Instruments

Instrument Rate on
Sample

Rate on
Detector

Data
Rate

[n/s] [Hz] [MB/s]

BEER 109 2×105 1.6
C-SPEC 108 2×105 1.6
DREAMS 3.4×108 107 80
ESTIA 108 800
FREIA 5×108 1.2×107 96
HEIMDAL 2×109 8×106 64
LOKI ≤ 109/cm2 4×107 320
SKADI ≤ 109/cm2 4×107 320
T-REX 108 2×105 1.6

THE DATA ACQUISITION PIPELINE
ESS instruments will use an aggregator-based data ac-

quisition pipeline. Apache Kafka was chosen as the central
technology for aggregation and streaming, using Google
FlatBufers for serialisation. In this architecture, producers
and consumers of data are decoupled and exchange data
through the aggregator. Figure 1 shows an overview of the
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main components of the architecture and the low of data
among them.

Data Aggregation and Streaming
Aggregation of the instrument data simpliies the design of

consumers by allowing them to subscribe to data of interest
using only one protocol (the Apache Kafka protocol, in
this case). This decouples them from potentially diferent
semantics on the data source side, such as control system or
detector readout-speciic protocols.

Apache Kafka The central piece of the aggregation and
streaming infrastructure is Apache Kafka, an open-source
distributed streaming platform [4]. It works as a clustered
publish-subscribe messaging system and is designed for
scalability and robustness to hardware failures.

When sending data to the cluster, a client publishes mes-
sages to a topic, which is identiied by a string. Topic data
are written to disk with conigurable persistence, in one or
more partitions that can be allocated to diferent brokers,
allowing the system to scale by adding more servers to it.
The C/C++ library librdkafka [5] has been chosen as the
standard for clients to communicate with the Kafka cluster.

In this architecture, logic and protocols for dealing with
each type of data source and destination are kept in the
producer and consumer applications’ code. The aggregator
is a generic application that needs to be conigured, but does
not require dedicated development.

Diferent topics are used for each source of data at each
instrument. A naming convention has been established as
<instrument>_<datatype>, deining topic names such
as C-SPEC_detector and HEIMDAL_monitors. High
volume data topics, such as for neutron detectors, can have
multiple partitions, with a diferent detector panel being as-
signed to a diferent partition if required for the cluster to
handle the data rates. Events from a single pulse are com-
bined in a message and sent to Kafka directly from the event
formation software.

For lower data rate topics, such as those containing EPICS
metadata, values from multiple sources are multiplexed over
the same topic by adding both an identiier and the value
to the messages. The EPICS to Kafka Forwarder is being
developed as part of the pipeline to send these data to the
Kafka cluster.

Kafka can also be used as a command bus, and dedicated
topics have been created for control and status messages to
be exchanged by applications, using JSON. These messages
are currently used for commands like starting and stopping
EPICS data forwarding and ile writing, and also to send
coniguration to some of the applications at runtime.

FlatBufers and Streaming Data Types For data to be
successfully transferred between applications, a common
format has to be adopted. Kafka does not process the con-
tents of the messages it receives, so the agreement only needs
to be established between the producing and consuming act-
ors. This is done using Google FlatBufers, an eicient

open source serialisation library [6]. It includes a compiler
that takes a schema as input and produces a programming
language-speciic ile for inclusion by projects using that
schema, e.g. a C++ header ile or a Python module.

A set of common schemas have been deined and are kept
in a source code repository [7]. Schemas are identiied by a
32-bit value that is sent in every serialised bufer. This allows
receivers to determine the correct schema for unpacking; the
adopted convention for the repository is to preix the schema
ile name with that identiier. It is possible to make backward
compatible modiications to a schema which is already in use
and proposed changes to released schemas have to undergo
a review process by another project member before being
accepted. Table 2 shows the main schemas in use by the
pipeline applications.

Table 2: FlatBufers Schemas

Schema Description
ev42_events.fbs Neutron detection event data
f142_logdata.fbs Scalar and array data
f143_general.fbs General EPICS structure

Data Producers
Data sources are instrument components such as neutron

detectors, choppers, motors and sample environments. All
of the time-sentsive data and metadata will be timestamped
at the origin using the ESS distributed timing system [8].

Event Formation Before neutron event data is fed into
the relevant Kafka topic the acquisition pipeline interface to
the detectors will receive raw event data over UDP. These
Event Formation Units (EFUs) will have a direct ibre con-
nection to detector panels and process their output to gen-
erate the detector ID and timestamp pairs. Each type of de-
tector requires specialised event formation algorithms. The
processing happens in software, allowing diferent methods
to be easily prototyped and tested before the system goes
into production [9,10]. The EFU design is modular and con-
sists of separate input, processing and output threads, which
allows a common software infrastructure that performs net-
work input and output to Kafka to be reused for the various
detectors.

In instruments with multiple detector panels, multiple
EFUs can be used, with each connecting to a diferent panel
in parallel; this allows the total neutron event throughput to
scale horizontally by adding more units. Each of the EFUs
can write to a diferent Kafka partition of the same topic.
This is illustrated in Fig. 2. The Kafka client that sends the
events to the cluster is directly integrated into the output
thread and uses the ev42_events.fbs schema. The EFU can
send metrics to Graphite and log messages to Graylog.

EPICS Forwarder Non-neutron metadata will arrive
through EPICS [11] from sources such as the instrument
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Kafka Cluster
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Figure 1: System architecture and data low. The components in dark are being developed as part of the pipeline; dashed
lines represent metrics and log messages.
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instr2 detector/partition1
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Det. Panel

EFU

EFU
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Figure 2: The output of each detector panel is processed
by a diferent EFU, which, in turn, can send messages with
events to diferent Kafka topic partitions.

choppers, motors and sample environments. These compon-
ents expose setpoint and readback values as process variables
(PVs). The EPICS to Kafka Forwarder is being developed
for monitoring PVs of interest and forwarding their values to
the Kafka cluster [12, 13]. PV values are serialised and sent
to the Kafka cluster multiplexed over a dedicated data topic,
as illustrated in Fig. 3. The f142_logdata.fbs and f143_gen-
eral.fbs schemas are currently used by the Forwarder.

Fast Sample Environment Measurements of alternat-
ing electric and magnetic ields, and some strain and pressure
sensors are also expected to generate data at high rates, with

IOC 1
pvA

pvB
IOC 2

pvC

Forwarder

Kafka Cluster

Kafka Broker

pvA

3.14

1423

pvB

4

1427

pvC

OK

1431

pvB

6

1521

pvC

ERROR

1555

instrX metadata

PV Name

Value
Timestamp

Figure 3: EPICS data is forwarded to the Kafka cluster, with
diferent PV updates multiplexed over the same topic.

anticipated frequencies on the order of 1 kHz to 1 MHz. Pos-
sibilities for handling these data include using EPICS and the
Forwarder, a directly integrated Kafka producer, or sending
data to an EFU.

Data Consumers
Consumers of experiment data subscribe to the Kafka top-

ics of their interest, using the associated FlatBufers schemas
to deserialise the aggregated data. The two main consumers
of the aggregated data currently being considered are the
NeXus File Writer and the live data reduction and visualisa-
tion system.
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Most consumers are expected to consume data in real
time, as aggregation occurs. Consumers can, however, fetch
older messages from the Kafka cluster, provided they are still
available in its storage. The cluster retention parameters can
be tuned, to ensure persistence is long enough for consumers’
needs, considering latencies in the system, possible failures
and available storage volume.

NeXus File Writer Experiment data will be persisted
to iles conforming to the NeXus standard [14] for oline
reduction, analysis and archiving. For that, a NeXus File
Writer is being developed as part of the data acquisition
pipeline [12,15]. This application subscribes to the complete
set of Kafka topics containing neutron detector events and
metadata for one instrument, deserialises the FlatBufers
messages and writes data to iles according to a speciied
hierarchy and naming scheme. As the File Writer writes
both event data and metadata, it uses most schemas that can
be used by the producers and, in the case of EPICS metadata,
also demultiplexes the values from the common data topics
used by the Forwarder.

Live Data Reduction and Visualisation Mantid [16]
will be used for data reduction at ESS and work is in progress
at DMSC and partner institutes to adapt it to consume data
from Kafka in real time. This will allow it to be used to
provide live visualisation and feedback for experiments.

STATUS OF THE PIPELINE
Development of the pipeline and its components is pro-

gressing as planned. The EFU, the EPICS Forwarder and the
NeXus File Writer are being actively developed and are cap-
able of processing and transporting data through the pipeline.
Apache Kafka has been deployed to diferent environments
on physical as well as virtual servers, for development and
testing.

Metrics and Logging
Graphite [17] is currently being used for storing met-

rics. It includes a server that receives metrics from a net-
work connection and stores them in a time series database.
Grafana [18] is used for the visualisation. In the packaging
step for the installation of Kafka, the kafka-graphite [19]
library is added to the package for sending broker metrics
to Graphite. This provides a simple way to monitor rates of
data being sent to and retrieved from each broker, and also
to obtain rate metrics for speciic topics.

As the pipeline consists of a number of distributed com-
ponents that will run on diferent machines, a centralised log
solution has been adopted. Log messages are sent to a Gray-
log server [20], using the graylog-logger library developed
at DMSC [21].

Building and Testing
Each commit to a repository triggers an automated build

job, that compiles the software and runs existing tests. Be-
sides this, an automated integration test is run twice a day,

fetching the latest version of each application from the mas-
ter branch build, deploying them to a set of virtual machines
and running a series of commands and checks. Build and
test automation are done using Jenkins [22].

Ansible [23] is used for automating the deployment and
orchestrating the test steps. The build and test machines are
Linux nodes running CentOS, with their coniguration also
kept in Ansible iles. RPMs are generated for the installation
of external components and libraries, such as Kafka and
FlatBufers.

After deploying the applications to the target machines
and running simple tests to ensure all the required external
services are running, the Ansible scripts start the applica-
tions and a simulation data streamer, which reads data from
iles recorded at test runs of the MultiGrid detector and
sends them to the EFU. The EFU, in turn, processes the raw
data and sends the calculated events to the Kafka cluster,
from which the NeXus File Writer subscribes. In parallel,
an EPICS IOC provides simulated data for the PSI SINQ
AMOR instrument [12, 24]; the values of one of the PVs is
sent to the Kafka cluster by the EPICS to Kafka Forwarder,
and some updates to its value are performed. Metrics and
log messages are sent to Graphite and Graylog and, at the
end of the test, applications are stopped and the generated
NeXus ile is copied for a check of some of the event val-
ues. Figure 4 shows a Grafana screen with metrics from the
Kafka cluster collected during runs of the integration test.

Figure 4: Grafana screen with Graphite metrics for the in-
tegration test Kafka cluster.

Dedicated hardware for testing and integration is available
at the ESS Instrument Integration Project (ESSIIP) laborat-
ory. Three high performance servers with two 10 Gbit Eth-
ernet network cards each are currently located there, where
other hardware such as choppers and sample environment
equipment is also available. This allows for testing the com-
plete pipeline in a pre-production, instrument-like setup,
both for integration and performance.

Work is going on to improve reproducibility of the auto-
mated software builds in Jenkins by executing them inside
Docker [25] containers. Docker images have been created
for the build environments and a new container is started for
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each build, which then proceeds from a well known state and
destroys the container after its end. The Conan C++ package
manager [26] is being used to install dependencies inside the
containers at the start of each build. Package recipes are kept
in a public repository [27], while a local Conan repository in
the build and test environment keeps binary versions of the
packages for download by the build jobs. Figure 5 illustrates
this worklow.

Docker

Registry
Source
Repo.

Jenkins

Create

Container
Setup Build/Test

Destroy

Container

Conan

Repo.

Image Source Code

Binary Packages

Figure 5: Jenkins build job worklow using Docker contain-
ers and a local Conan package repository.

CONCLUSION AND FUTURE WORK
The data acquisition pipeline for the ESS instruments is

based on an aggregation and streaming architecture using
Apache Kafka and Google FlatBufers, with software de-
veloped at DMSC and partner institutes for event formation,
EPICS forwarding and ile writing. Development of the
pipeline components is progressing as planned, with regu-
lar automated tests being performed individually and in an
integrated setup.

Planned future work includes continuing the development
of pipeline components and their integration with the ex-
periment control program. The existing builds and tests
will be improved by adding more checks and better repro-
ducibility, with automated test environment coniguration.
Performance tests on physical machines will also be per-
formed to evaluate the pipeline and tune the Kafka cluster
coniguration.
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