
JavaFX AND CS-STUDIO: BENEFITS AND DISADVANTAGES
IN DEVELOPING THE NEXT GENERATION OF

CONTROL SYSTEM SOFTWARE
C. Rosati∗, European Spallation Source ERIC, Lund, Sweden

K. Shroff†, BNL, Upton, NY, USA
K. Kasemir‡, ORNL, Oak Ridge, TN, USA

Abstract
The new developments inside the CS-Studio commu-

nity [1–4] were made using the JavaFX platform [5–9] to
overcome the limitations and difficulties of using Eclipse
SWT. This article will explain the benefits and disadvantages
of using the JavaFX technology inside Eclipse RCP, and try
to foresee the path of the new generations of CS-Studio
application.

INTRODUCTION
Control System Studio (CS-Studio, see [1, 2]), is a multi-

platform, Eclipse-based [10–12] desktop application, con-
taining tools and features to monitor and operate large scale
control systems, such as the ones in the accelerator commu-
nity.
The first version of CS-Studio is dated back to 2006 [1].

Its implementation was based on the Eclipse Rich Client Plat-
form (Eclipse RCP, see [11,12]), and its user interface was
realized using the Eclipse Standard Widget Toolkit (Eclipse
SWT, see [12, 13]).
Since August 2012, when Oracle released version 2.2

of JavaFX (finally available for Windows, Max OS X, and
Linux, see [5]), thanks to the availability of the FXCanvas
class1 [7,8,14] allowing JavaFX be embedded into an Eclipse
SWT user interface, the CS-Studio community started to
develop new tools and features using JavaFX instead of
Eclipse SWT.

Currently, the following features are based on JavaFX (see
Fig. 1):

• Data Browser 3;

• Display Builder (see [15, 16]);

• Fault tools;

• Logging Configuration;

• Probe;

• PV Tree;

• Save & Restore, and its Periodic Table.

∗ claudio.rosati@esss.se
† shroffk@bnl.gov
‡ kasemirk@ornl.gov
1 Already available on JavaFX 2.0, only for the Window platform [5].

ECLIPSE RCP
Eclipse Rich Client Platform [11,12] has served the CS-

Studio community well for about a decade. While Eclipse
RCP is stable, this also means it has not offered significant
new features for the CS-Studio use cases in the last couple
of years.
SWT [13] and RAP (Remote Application Platform, see

[17]) developments have halted. e(fx)clipse (JavaFX Tool-
ing and Runtime for Eclipse and OSGi, see [18]) has stalled,
not progressing towards replacing SWT. E4 [12, 19] is an
interesting concept at the lower API level, but the ‘compati-
bility’ layer remains the only practical API. The tycho-based
build system [20] causes repeated issues with CS-Studio
build setups.

Benefits
The following are recognized by the CS-Studio commu-

nity to be the advantages of developing CS-Studio with the
Eclipse RCP framework:

• OSGi [21] packaging, control of exported packages,
dependencies;

• Extension points mechanism

– for PV types, logbook support, archive data
source, widgets,

– for online help,
– for preference UI;

• Cross platform (Max OS X, Linux, Windows);

• Configuration of site-specific products via plugins and
features;

• OSGi console with ‘telnet’ access;

• Jetty [22] for services that have web interface;

• Hierarchical preferences;

• Workspace persists window layout and preference
changes;

• Object contribution mechanism for context menu:
Open apps on files, “PV Name” context menu;

• Support for CVS [23], Subversion (SVN, [24]), Git
[25];

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA154

TUPHA154
770

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



Figure 1: JavaFX features in CS-Studio.

• PyDev [26];

• XML Editor;

• WikiMedia Editor [27];

• Maven (in theory, [28]).

Disadvantages
The following are instead the disadvantages of the Eclipse

RCP development:

• ‘Editors’ part stack doesn’t participate in Perspective
handling, opening up when any ‘Launcher’ is invoked
[12];

• No control over initial location of newly opened parts,
with restrictions on moving parts around (this being
one of the bigger overall issue);

• API has grown in too many directions: PopupMenu,
ActionSets, Action & Handler, E4 model;

• JavaFX in SWT FXCanvas [7, 8, 14] is sluggish;

• Workspaces and associated restrictions running on mul-
tiple machines;

• Somewhat heavyweight application with slow initial
launch phase;

• Maven (in practice, when Tycho plug-in [20] is in-
volved).

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA154

Software Technology Evolution
TUPHA154

771

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



PHOEBUS APPLICATION FRAMEWORK
The upcoming Java 9 release [29] will come with an im-

portant improvement: the Java Platform Module System
(JPMS, [30,31]). The new way of packaging modules and
declaring modules dependency opens a new perspective on
developing the new generation of CS-Studio based only on
Java/JavaFX.
Few application frameworks based entirely on JavaFX

exist. Some are based on OSGi for module management
[32], others are not open-source [33], or not exclusively
targeted to JavaFX [32, 34, 35], and no one seems to be
really full-fledged, well supported, or even mature enough
to start developing the new CS-Studio [36–38] 2. The same
was proved true also for some specific components, like the
docking framework [39–41], not available by default in the
standard JavaFX platform.

That said, we are exploring the implementation of a new
application framework: Phoebus [42]. The aim is to allow
the update of the Control System Studio toolset removing
the dependencies on Eclipse RCP and SWT.
The key goals of the Phoebus project are (see Fig. 2):

• Allow easy migration of the functionalities of key CS-
Studio tools, specifically the Display Builder, Data
Browser, PV Table, PV Tree, Alarm UI, and Scan UI,
supporting their original configuration files with 100%
compatibility;

• Provide full control of windows placement, free from
RCP restrictions;

• Use JavaFX as the graphics library to overcome limita-
tions of SWT;

• Prefer core Java functionality over external libraries
whenever possible (JavaFX for UI, Java 9 Platform
Module System for bundling, SPI – Service Provider
Interface [43] – for locating and loading services
and extensions, java.util.logging for logging and
java.util.prefs for preferences, . . . );

• Reduce build system complexity, fetching external de-
pendencies in one initial step, then supporting a fully
standalone, reproducible build process;

• Provide shared modules and services for

– Actions,
– Menu bar,
– Toolbar,
– Status bar,
– Selection (contextual content),
– Docking,
– Windows management,
– Splash screen,
– Application start-up and shutdown.

2 Drombler FX [32], Gluon Desktop [33], Griffon [34] being nevertheless
the most interesting ones.

OSGi vs. JPMS
OSGi (Open Services Gateway initiative [44]) specifi-

cation describes a modular system and a service platform
for the Java programming language that implements a com-
plete and dynamic component model, something that did
not exist in standalone Java/VM environments before ver-
sion 9. Applications or components, coming in the form of
bundles for deployment, can be remotely installed, started,
stopped, updated, and uninstalled without requiring a reboot;
management of Java packages/classes is specified in great
detail. Application life cycle management is implemented
via APIs that allow for remote downloading of management
policies. The service registry allows bundles to detect the
addition of new services, or the removal of services, and
adapt accordingly.

The OSGi specifications have evolved beyond the original
focus of service gateways, and are now used in applications
ranging from mobile phones to the open-source Eclipse
IDE/RCP.

The Java PlatformModule System [30] is intended to raise
the abstraction level of coding in Java making the Java SE
Platform, and the JDK, more easily scalable down to small
computing devices, improving the security and maintain-
ability of Java SE Platform implementations in general, and
the JDK in particular, enabling improved application perfor-
mance, and making it easier for developers to construct and
maintain libraries and large applications, for both the Java
SE and EE Platforms. The module system is be powerful
enough to modularize the JDK and other large legacy code
bases, yet still be approachable by all developers.
Comparing the two technologies in the context of the

CS-Studio application we discover that:

• OSGi and JPMS offer similar control of dependencies
and exposed packages;

• OSGi supports multiple versions of the same plugin.
In practice this is more of a disadvantage. We never
needed, for example, two different versions of MySQL
being loaded contemporarily;

• OSGi allows dynamic shutdown and replacement of
plugins (necessary mostly for embedded applications),
but we never used this feature.

Extension Points vs. SPI
Eclipse extension points can provide information (label,

icon path, . . . ) as well as classes which can then be instanti-
ated. In principle, this allows users of extension points to,
for example, present menu entries with the label and icon of
an extension without actually invoking any code from the
extension.
In comparison, Java Service Provider Interface only al-

lows obtaining implementations of the service interfaces.
There is no way to obtain a descriptor-like information
such as label or icon for a service without instantiating
and invoking the service intself. This likely requires many

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA154

TUPHA154
772

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



Figure 2: Phoebus architecture.

services to be in the form of factory classes that offer
getLabel(), getIconPath() methods, and finally allow
creating objects for that service. This is acknowledged in
the ServiceLoader javadoc, where:

“The provider class is typically not the entire
provider itself but rather a proxy which contains
enough information to decide whether the provider
is able to satisfy a particular request together with
code that can create the actual provider on de-
mand.”

The code for the service, i.e. the factory proxy class, is
instantiated even if just the label is required and the actual
service will otherwise never be used. Nevertheless, this
service implementation pattern will produce service code
with an acceptable, very low memory footprint.

Cross Platform Support
Eclipse supports Windows, Linux, Mac OS X. Java 9

approach is likely at least as ‘cross platform’, may even
allow support of Raspberry Pi and Android/iOS [45,46]

CONCLUSION
Current development of CS-Studio is based on Eclipse

RCP, but in recent years a lot of development was done using
embedded JavaFX because of its many advantages and easi-
ness of use compared with Eclipse SWT. Most of the more
important tools in CS-Studio have a JavaFX implementation:
Display Builder, DataBrowser, PV Tree, . . .
The upcoming release of Java 9 will bring the new Java

Platform Module System, providing the Java Platform with
the most critical feature available in Eclipse RCP through
the OSGi technology.
This is most favourable moment in time to start the de-

velopment of a “pure JavaFX” version of CS-Studio, while
maintain the current Eclipse RCP-based version by improv-
ing the JavaFX tools already available.

Phoebus project was started few months ago to explore
the feasibility of using the new Java 9 JPMS and the standard
SPI as means for porting the existing codebase into a new
JavaFX-only application, and the initial test are more than
promising. The development of such a framework is running
fast, and more developers from the various accelerator facil-
ities around the world are expected to join soon the initial
taskforce setup by BNL, SNS and ESS.

Soon the current Phoebus project [42] will be restructured
to provide

• better separation between the core frameworks and the
extension ones,

• better documentation,

• various examples of different complexity, exploiting
the various aspects of the framework.

Not only CS-Studio will benefit from the Phoebus project
development. Our hope is that other applications in the
accelerator community [47] (and not only), wishing to use a
pure Java/JavaFX modern UI framework, will adopt it, and
possibly more developers will join the Phoebus community
in the common effort of improve and keep alive this exciting
project.

REFERENCES
[1] J. Hatje, M. Clausen, C. Gerke, M. Moeller, and H. Rickens,

“CONTROL SYSTEM STUDIO (CSS),” in ICALEPCS 2007.
Oak Ridge National Laboratory, October 2007. [Online].
Available: http://accelconf.web.cern.ch/AccelConf/ica07/
PAPERS/MOPB03.PDF

[2] Control System Studio. [Online]. Available: http:
//controlsystemstudio.org/

[3] GitHub – Control System Studio. [Online]. Available:
https://github.com/ControlSystemStudio

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA154

Software Technology Evolution
TUPHA154

773

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



[4] K. Kasemir and G. Carcassi. Control System Studio
Guide. [Online]. Available: http://cs-studio.sourceforge.net/
docbook/index.html

[5] JavaFX. [Online]. Available: https://en.wikipedia.org/wiki/
JavaFX

[6] JavaFX: Getting Started with JavaFX. [Online]. Avail-
able: http://docs.oracle.com/javase/8/javafx/get-started-
tutorial/index.html

[7] H. Schildt, Introducing JavaFXTM 8 Programming, 1st ed.
McGraw-Hill Education, 2015.

[8] J. Vos, W. Gao, S. Chin, D. Iverson, and J. Weaver, Pro
JavaFX 8: A Definitive Guide to Building Desktop, Mobile,
and Embedded Java Clients, 1st ed. Apress Media, 2014.

[9] H. Ebbers,Mastering JavaFX® 8 Controls, 1st ed. McGraw-
Hill Education, 2014.

[10] Eclipse. [Online]. Available: https://www.eclipse.org/home/
index.php

[11] Eclipse Rich Client Platform. [Online]. Available: https:
//wiki.eclipse.org/Rich_Client_Platform

[12] L. Vogel, Eclipse Rich Client Platform: The complete guide
to Eclipse application development, 3rd ed. Lars Vogel,
May 2015.

[13] SWT: The Standard Widget Toolkit. [Online]. Available:
https://eclipse.org/swt/

[14] Class FXCanvas. [Online]. Available: http://docs.oracle.
com/javase/8/javafx/api/javafx/embed/swt/FXCanvas.html

[15] K. Kasemir, M. Grodowitz, A. Carpenter, and C. Rosati,
“CS-Studio Display Builder Update,” in Spring 2017
EPICS Collaboration Meeting. Research Reactor Insti-
tute, Kyoto University (KURRI), May 2017. [Online].
Available: http://www.rri.kyoto-u.ac.jp/EPICS/materials/
DisplayBuilderUpdate_2017_05.pptx

[16] M. Grodowitz and K. Kasemir, “CS-Studio Display Builder
– Tutorial,” in Spring 2017 EPICS Collaboration Meeting.
Research Reactor Institute, Kyoto University (KURRI), May
2017. [Online]. Available: http://www.rri.kyoto-u.ac.jp/
EPICS/materials/DisplayBuilder_training_2017.pdf

[17] Eclipse Remote Application Platform. [Online]. Available:
http://www.eclipse.org/rap/

[18] e(fx)clipse – JavaFX Tooling and Runtime for Eclipse
and OSGi. [Online]. Available: https://www.eclipse.org/
efxclipse/index.html

[19] Eclipse e4 Project. [Online]. Available: https://eclipse.org/
e4/

[20] Eclipse Tycho – Building Eclipse plug-ins with maven.
[Online]. Available: https://eclipse.org/tycho/

[21] OSGi™Alliance. [Online]. Available: https://www.osgi.org
[22] Eclipse Jetty. [Online]. Available: http://www.eclipse.org/

jetty/
[23] Eclipse CVS. [Online]. Available: https://www.eclipse.org/

eclipse/platform-cvs/
[24] Eclipse Subversive – Subversion (SVN) Team Provider.

[Online]. Available: http://www.eclipse.org/subversive/

[25] Eclipse EGit. [Online]. Available: http://www.eclipse.org/
egit/

[26] Eclipse PyDev. [Online]. Available: http://pydev.org

[27] Eclipse Mylyn WikiText. [Online]. Available: https:
//wiki.eclipse.org/Mylyn/WikiText

[28] Eclipse M2Eclipse. [Online]. Available: http://www.eclipse.
org/m2e/

[29] JDK 9 Early-Access Builds. [Online]. Available: http:
//jdk.java.net/9/

[30] S. Colebourne. (2017) Java 9 modules - JPMS basics.
[Online]. Available: http://blog.joda.org/2017/04/java-9-
modules-jpms-basics.html

[31] Ł. Gajowy. (2017) Exploring Java 9 – Java Platform Module
System. [Online]. Available: https://www.polidea.com/blog/
Exploring-Java-9-Java-Platform-Module-System/

[32] Drombler FX – The modular application framework for
JavaFX. [Online]. Available: http://www.drombler.org/
drombler-fx/

[33] Gluon Desktop. [Online]. Available: http://gluonhq.com/
products/desktop/

[34] Griffon. [Online]. Available: http://griffon-framework.org

[35] JacpFX. [Online]. Available: http://jacpfx.org/index.html

[36] Basilisk. [Online]. Available: https://github.com/basilisk-
fw/basilisk

[37] JRebirth. [Online]. Available: http://www.jrebirth.org/index.
html

[38] mvvmFX. [Online]. Available: https://github.com/sialcasa/
mvvmFX

[39] AnchorFX. [Online]. Available: https://github.com/
alexbodogit/AnchorFX

[40] DockFX. [Online]. Available: https://github.com/
RobertBColton/DockFX

[41] Mosaic. [Online]. Available: https://github.com/fxpresso/
Mosaic

[42] phoebus. [Online]. Available: https://github.com/shroffk/
phoebus

[43] Introduction to the Service Provider Interfaces. [Online].
Available: https://docs.oracle.com/javase/tutorial/sound/SPI-
intro.html

[44] OSGi. [Online]. Available: https://en.wikipedia.org/wiki/
OSGi

[45] Gluon VM. [Online]. Available: http://gluonhq.com/
products/mobile/vm/

[46] Mobile Project. [Online]. Available: http://openjdk.java.net/
projects/mobile/

[47] C. Rosati and E. Laface, “NEW APPROACH IN DE-
VELOPING OPEN XAL APPLICATIONS),” in IPAC
2017. European Spallation Source ERIC, May 2017. [On-
line]. Available: http://accelconf.web.cern.ch/AccelConf/
ipac2017/papers/thpab137.pdf

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA154

TUPHA154
774

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution


