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Abstract
The FAIR General Machine Timing system has been in

operation at GSI since 2015 and significant progress has
been made in the last two years. The CRYRING accelera-
tor was the first machine on campus operated with the new
timing system and serves as a proving ground for new con-
trol system technology to this day. A White Rabbit (WR)
network was set up, connecting parts of the existing facil-
ity. The Data Master was put under control of the LSA
physics core. It was enhanced with a powerful schedule
language and extensive research for delay bound analysis
with network calculus was undertaken. Several form factors
of Timing Receivers were improved, their hard and software
now being in their second release and subject to a continuous
series of automated long- and short-term tests in varying
network scenarios. The final goal is time-synchronization
of 2000-3000 nodes using the WR Precision-Time-Protocol
distribution of TAI time stamps and synchronized command
and control of FAIR equipment. Promising test results for
scalability and accuracy were obtained when moving from
temporary small lab setups to CRYRING’s control system
with more than 30 nodes connected over 3 layers of WR
Switches.

INTRODUCTION
Motivation

The GSI-Helmholtz Center for Heavy Ion Research (GSI)
in Darmstadt, Germany, is engaged in the ongoing develop-
ment of a new type of control system (CS) for large physics
experiments, which can utilize high accuracy timing. White
Rabbit (WR), the underlying time synchronization technol-
ogy, was an initiative started in 2008 by the European Center
for Nuclear Research (CERN) and initially aimed at the mod-
ernization of the CS of the Large Hadron Collider (LHC)
at CERN in Geneva, Switzerland. At the time, GSI took an
interest in evaluating suitable technologies for a CS mod-
ernization and a new CS for the upcoming Facility for An-
tiproton and Ion Research (FAIR), a major extension to the
GSI accelerator facilities. Research and development of WR
successively became a close collaboration between CERN
and GSI/FAIR.

System Layout
The FAIR CS approach aims for an alarm-based CS with

clear separation of command dispatch and execution time.
Furthermore, timed machine control and set-values supply
use separate paths. This results in highly scalable system

whose endpoints feature separate interfaces for configuration
data, such as current ramps for magnets, and high accuracy
timing and command, such as orchestrating the start times
and successions of different current ramps. Figure 1 illus-
trates the concept: Settings Management derives both set-
values and possible machine schedules from physical beam
parameters. It provides specific set value data to individual
endpoints (EP) to configure magnets, RF cavities, filters and
other accelerator components (blue and red arrows). The
hard real-time CS master, called Data Master (DM), is a de-
terministic scheduler employing high accuracy WR timing,
sending commands to EPs in order to orchestrate the use
of specific set-values at certain times (green arrows). The
DM provides the flexibility to adapt the command stream
to the facility’s status, such as pending interlocks and beam
requests, on the fly.

A hard-real time capable timing network deterministically
distributes the DM’s commands over a tree of fiber links
and custom WR switches, while set-values are carried over
standard gigabit copper network infrastructure. The timing
network employs the deterministic Etherbone (EB) network
protocol [1, p. 105-117] [2] to communicate with the EPs.
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Figure 1: Schematic of FAIR CS. Left: Real-time Data Mas-
ter (DM), Right: Settings Management Server. Endpoints
(EP) receive both commands and set-values.
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Most EPs are, like the DM, hybrids of a programmable
timing receiver (TR) hardware and a host computer running
a Linux based operating system. Finally, EPs can use WR
timing to time-stamp pulses on their inputs or assign time-
stamps to sets of analogue data sampled by add-on hardware.

TEST IT TO BEST IT
In Verificatio Veritas

During the last two years, the necessity for test coverage of
the complete CS stack became ever more noticeable. While
the active WR community is a boon to FAIR CS develop-
ment and GSI is itself an active contributor, it is a major
challenge to keep FAIR TR designs up to date with current
WR development progress. However, apart from consequent
versioning, industry best practice can be hard to adapt to the
small teams in research institutions, often required to prac-
tice agile development on top of a large and ever changing
community code base.

Automated frameworks of standardized tests are an option
that is much less likely to suffer from a developers white-box
preconceptions. However, being generic, they also cannot
be as thorough as bespoke tests written by verification engi-
neers. But if the test intervals are small enough, the system
offers developers close loop feedback to, alerting them when
encountering bugs and strongly narrowing down possible
causes.

Little Helper
To address the problem, a concept for a software driven,

fully automated assembly and testbed for the FAIR CS was
developed. Figure 2 shows the employed setup: Images are
automatically created and tested on a small scale CS of multi
layer WR network and TRs, their actions controlled by a
DM. The current testbeds are capable of verifying individual

FAIR CS components as well as testing their interplay and is
able to verify timing accuracy down to 1 ns. While all shown
components are functional today, they are currently split into
two systems: CI automatically creates and image distribution
for individual TR testbeds, the Timing Test facility uses the
full CS stack for manually designed tests. Full automatic
use of the full test CS is planned for mid 2018.

PROVING GROUNDS
For the past two years, the resulting prototype CS has

been used to control CRYRING, a real world accelerator,
providing valuable experience for control of the future FAIR
facility, which is planned to go into operation in 2018.

CRYRING Accelerator
The CRYRING accelerator is a small synchrotron ma-

chine with its own linear injector stage. The most noticable
successful test was CRYRING’s first turn, that is, the beam
achieving more than one orbit in the synchrotron ring. This
success is documented in a FAIR press release from August
2016, where it was noted: “Successful beam transport from
ESR to CRYRING . . .Furthermore, new beam diagnostics
and FAIR-like control hardware and software could be tested
with real beam.” [3]

Experiments and Detectors
Contrary to equipment controllers, experiment data ac-

quisition at GSI and the future FAIR facility intend to use
WR TRs for mainly two purposes: Primarily, their time latch
units are used to synchronize independent data acquisition
systems. Extended tests have shown the system’s suitability
to seamlessly integrate globally triggered and free running
data acquisition systems. A sampling time accuracy within
3 ns to 6 ns RMS could be achieved, which is sufficient to
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Figure 2: Schematic of the automated continuous integration system at GSI.
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correlate data from independent remote data acquisition sys-
tems at FAIR.
The second application is the use of synchronized clock

outputs of WR TRs for distributed high precision time of
flight measurements. Utilizing disciplined 200MHz clocks
from TRs, an overall precision of 11 ps RMS could be
achieved as electronics resolution. This result indicates a the
clock jitter for TRs of 5 ps to 7 ps when distributed campus
wide in white rabbit timing networks. Both features were
tested with the latest software release cherry and will be
intensively used in the upcoming beam times.

Buffing the White Rabbit
GSI’s timing team has also been working in close collab-

oration with Alessandro Rubini, creator of most of WR’s
firmware, to generally improve stability of the WR code and
especially for Altera FPGA platforms. In addition, the team
has developed and integrated sophisticated newWR logging
and monitoring capabilities so as to increase the reliability
of the synchronization.

A HEAD OF REAL-TIME
The DM version in use since 2015 acts as a message

sequencer and offered a high level software interface to the
settings management system, allowing it to be programmed
during runtime. DM firmware was in turn designed to have
deterministic behavior with as small a jitter as possible.

Meddling in Real-time: Command Queues
As it became apparent that the evolving FAIR use cases

would require ever more real-time control over the DM,
whole new set of problems had to be addressed.

New Rules on a Whim It was required that decisions
at multiple points needed to be influenced from outside.
This means specifying who should do what and when for
each command, the when aspect being the most complex for
software without the capability to share the DM’s accurate
notion of time.

Another problemwas space. The DM’s hardware memory
inside the FPGA is very limited, so redundant schedules or
commands would waste much needed space. But what is an
appropriate size?
Further more, what in case of emergencies? On a beam

dump alert, a fast reaction is required. No one would like
the DM to execute queues of outdated commands, produc-
ing even more beam which needs to be dumped. So there
also needed to be a way to preempt issued, but not yet exe-
cuted, commands. The goals are therefore to allow multiple
simultaneous points of decision, preserve command order,
allow synchronization and preemption and, finally, have a
space efficient repetition scheme. The conclusion was that
each point of decision within a schedule must have its own
command queue. These small software queues preserve
command orders, but are designed as priority queues with
three levels to allow preemption, i.e. if there is a command

in high priority, it will be executed before any low priority
command.

Generator Power To achieve the other goals, it could
be shown that it is advantageous to send not commands, but
command generators. In computer science, a generator is a
function object which usually takes no further input param-
eters during execution. It uses an internal state to change
its output behavior with each call. In this case, the inner
state carries a time-stamp for synchronization, specifying
when the generator is valid and should issue commands, and
a counter, specifying how many outputs occur before the
generator can be popped from the queue.

Intuitive Expression: Domain Specific Languages
Previous DM software versions used XML to describe

machine schedules. The new demand for more flexibility
brought this approach to its limits, as XML is not meant
to model complex directed graphs. More research into the
subject showed that graph based languages, such as GML
or dot [4], are much more suitable to the task. In the end,
dot was chosen for its wide acceptance and good integration
with the Boost libraries [5]. Using custom node and edge
properties, a domain specific language for machine control
schedules was crafted, specifically for use with timing mes-
sages in the FAIR CS. One of the major advantages is that
they do not need much textual overhead, and both their plain
text and especially their visualization are easy to read for
humans.

M_PPS

B_PPS

digraph g {
  M_PPS [type="tmsg",    toffs= 500000000, id="0x123", shape=oval];
  B_PPS [type="block", tperiod=1000000000, shape=rectangle];
  M_PPS  -> B_PPS -> M_PPS [type="defdst", color=red];
}

Figure 3: Minimal example for dot machine schedule.

DOT for FAIR CS Figure 3 shows the “hello world”
PPS example, a basic machine schedule making TRs produce
a pulse every second with a phase offset of 500ms (cosmetic
properties are grayed out). Nodes are connected by directed
edges, there different types available for both. Time block
nodes (rectangles) are time-spans, an auxiliary construct.
Timing messages (drawn as ovals) are “real” content, they
become messages on the timing network. A sequence of
messages is always terminated by a time block, and each
message has a time offset in nanoseconds relative to its corre-
sponding time block. The DM also knows command nodes,
which allow commands to be generated automatically from
machine schedules. This enables automatic synchronization
or loop behavior.
All traversed time blocks are added to a cumulative sum

(one per DM thread), so a message’s or command’s deadline
is simply calculated by adding its offset to the cumulative
sum. Its dispatch time is in turn defined by deducting the
planned time lead for transmission from its deadline. There
are default paths through the graph which the DM will take
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B_Select

ext.hcmd

M_RampUp

C_9more

M_KeepAlive

M_FlatTop

B_LoopInit M_1Shot

changehdest.,h9x

B_10Shots

int.hcmd
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B_Sync

B_CurrentRamp

B_Wait4Ring

ext.hcmd

Figure 4: Visualization of dot demo schedule for DM functionality. Directed edges (default red, alternatives black) connect
messages (ovals), commands (hexagon) to sequences terminated by time blocks (rectangles). Target (blue) and destination
update edges (magenta) provide command context. Time blocks with command queues allow real-time changes (blue),
sync time blocks auto-align to a given time grid (orange).

without outside interference (red edges) and alternative paths
(black edges), which can be chosen by inserting commands
into the corresponding queues. These queues are always
attached to time blocks and add decision capability (blue
rectangles).

CarpeDM To ensure a deterministic and fast real-time
CS, the DM hard and firmware is completely unaware and
unperturbed by memory management issues. Nodes and
edges describe a graph that can be transformed to linked
lists the DM can execute in real-time, each graph node is a
fixed size (52B) date node in the DM. The carpeDM soft-
ware library on the host can produce the binary and also
reconstruct the complete graph from it. This format is very
space and time efficient on the DM hardware side, very few
meta data nodes are needed to form command queues and
list alternative paths. In addition, a bitmap is needed by
the carpeDM, which is a small memory area with one bit
set for each occupied data node to allow management. The
native dual port RM allows parallel load without blocking
CPUs. However, it is essential only sub graphs which are
not currently in use are replaced. This is currently achieved
by copying updated versions of graphs, but in future, path-
finding algorithms like Dykstra’s shall be used to check
if sections allow hot in-place updates. Figure 4 shows a
schedule with overly simplified context to show most of the
available DM functionality: Multiple decisions, repetitions,
wait loops and alignment can easily be programmed and
visualized.

Safety First: Traffic Verification
The hardware design allowed the DM CPUs to be pro-

grammed without influencing the real-time behavior and
processes outgoing messages with an earliest-deadline-first
(EDF) scheduler. Together, these modules ensure the timely
delivery of commands to timing receivers. But can they
really, under all circumstances?

Knowing Your Limits Strictly speaking, the answer is
“no”. The outcome depends on the throughput and queuing

behavior of the whole system, all components from the DM
over the WR network down to the TRs. Once dispatched
to the network, all messages are final. The time lead for
message dispatch is therefore chosen as small as possible to
ensure both timely delivery and provide maximum flexibility.
Since the capacity and throughput of CS all components is
limited, excess utilization will lead to late message arrivals.
The goal must therefore be a system for calculating if the
system will run safely with a given set of initial conditions.
All valid machine schedule sets must therefore run within
CPU utilization ≤ 100%, do not exceed the WR network
bandwidth andmaximum transmission delay does not exceed
dispatch lead. The assessment is made even more complex
by possible changes during runtime.

The Big Questions So is it possible to model the com-
plex FAIR CS in a way that allows to obtain bounds for the
maximum transmission delay for a given traffic flow? And if
so, can a given set of possible traffic flows also be modeled,
their combinatorial space expressed as a specification? Will
that specification allow obtaining tight bounds for maximum
transmission delay?

Calculating a Network
The last two years of research have shown that there are

indeed ways to calculate feasibility in advance, even if real
time control of the DM is allowed. Research in this field
evaluating queuing theory and several other theories lead
to the conclusion that there is a particularly suitable frame-
work for providing guarantees for a communication system.
Network calculus (NC) [6].

Introduction to Network Calculus NC is an approach
that applies system theory to deterministic queuing systems
found in communications, such as computer networks. Con-
trary to traditional system theory used for electronic circuits,
NC employs a different set of algebra, the Min-Plus Dioid
(addition becomes computation of the minimum, multipli-
cation becomes addition). The approach is aimed at under-
standing and modeling fundamental properties of networks,
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such as delay or buffer requirements, scheduling or window
flow control, with a focus on worst case analysis.
NC represents network traffic as cumulative flows, i.e.

the sum of data over time. Systems, such as network cards,
switches, etc are usually defined by a maximum arrival curve
and a minimum service curve. Arrival curves specify burst
tolerance and maximum arrival bandwidth, service curves
the system latency and minimum service bandwidth. Flows
are shaped by arrival and service curves, and similar to filters
in a signal path in system theory, the curves of simple NC
systems can be combined to form more complex behavior.
Figure 5 shows the shaping effect of a system’s arrival

curve on a non-conformant traffic flow. The visualization
also shows that at all points, the flow’s latency and backlog
can directly be deduced from the sytem’s input and output
curves.
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Figure 5: Network flow shaped by an arrival curve.

FAIR CS Model It could be shown that NC theory can
provide a model for the FAIR CS network by modeling all
of its subcomponents with arrival and service curves as well
as scaling elements. A detailed explanation of the model
and its background is out of the scope of this paper, but
can be found in [1, p. 137-181]. The model and its curve
parameters were then entered into the Disco DNC simulation
tool [7], a numeric solver for deterministic network calculus,
to calculate delay bounds for given a set of arrival curves.
Results showed that the FAIR CS can be guaranteed to

stay within the target delay bound of 500 µs lead for the max-
imum net command bandwidth of 190Mbit s−1, but CPU
load balancing and traffic burstiness must be individually
analyzed during schedule preparation to prevent partial over-
load. The remainder of WR’s 1Gbit s−1 bandwidth is re-
quired for packet overhead, forward error correction (which
is the biggest portion), and medium to low priority traffic
such as time synchronization and management.

Curve Approximation Problem Transforming ma-
chine schedules to sets of possible input flows and further
into tight arrival curves is itself no trivial matter and has
only been lightly touched upon in the initial research as a

proof of concept. This particular problem has recently been
researched at the University of Kaiserslautern in collabora-
tion with GSI, the result providing an algorithmic approach
to obtaining tight arrival curves for FAIR machine schedules
provided in the dot format. [8].

CONCLUSION AND OUTLOOK
In the last two years, we have gained valuable experience

from productive use of the FAIR CS technology. This lead
to various improvements in WR timing technology, TR SoC
infrastructure and the CI verification scheme. It is planned
to fully automatize the CI system in 2018, further improv-
ing our productivity and the quality of the CS. In addition,
several new concepts allowing flexible real time control and
traffic verification for the DM have been researched and
implemented, going into test operation by the end of 2017.
Overall results were very positive, as the new FAIR CS

equipment was able to cope with all use cases in the test
phase on CRYRING. The next challenge will be testing the
new improvements in the next release against FAIR use cases
in 2018.

REFERENCES
[1] M. Kreider, “On Time, in Style: Nanosecond accuracy

in network control systems,” Doctoral Thesis, Glyndŵr
University, Wrexham, UK, Aug. 2017.
https://www-acc.gsi.de/wiki/pub/Timing/
TimingSystemDocuments/kreiderPhdwiki.pdf

[2] M. Kreider, R. Bär, D. Beck, W. Terpstra, J. Davies, V. Grout,
J. Lewis, J. Serrano, and T. Włostowski, “Open borders
for system-on-a-chip buses: A wire format for connecting
large physics controls,” Physical Review Special Topics -
Accelerators and Beams, vol. 15, no. 8, Aug. 2012. http://
link.aps.org/doi/10.1103/PhysRevSTAB.15.082801

[3] FAIR, “First ring for FAIR,” Aug. 2016.
http://www.fair-center.eu/en/news-events/
news-view/article/first-ring-for-fair.html

[4] E. R. Gansner, E. Koutsofios, and S. North, “Drawing graphs
with dot,” Tech. Rep., 2015. http://www.graphviz.org/
pdf/dotguide.pdf

[5] J. Siek, L. Lee, and A. Lumsdaine, The Boost Graph Library:
User Guide and Reference Manual, Portable Documents. Pear-
son Education, 2001.

[6] P. Thiran and J. Y. Le Boudec, Network Calculus. Springer,
2001.

[7] S. Bondorf and J. Schmitt, “TheDiscoDNC v2 –AComprehen-
sive Tool for Deterministic Network Calculus,” in Proc. of the
8th EAI International Conference on Performance Evaluation
Methodologies and Tools (ValueTools), December 2014.

[8] M. Schütze, “Modelling and analysis of timing constraints of
an industrial control system,” Bachelor thesis, University of
Kaiserslautern, Kaiserslautern, Germany, October 2017.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA092

Timing and Synchronization
TUPHA092

637

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


