
THE TIMING DIAGRAM EDITING AND VERIFICATION METHOD
G. Fatkin∗, A. Senchenko, BINP SB RAS and NSU, Novosibirsk, Russia

Abstract
Preparation and verification of the timing diagrams for the

modern complex facilities with diversified timing systems
is a difficult task. A mathematical method for convenient
editing and verification of the timing diagrams is presented.
This method is based on systems of linear equations and
linear inequalities. Every timing diagram has three intercon-
nected representations: a textual equation representation, a
matrix representation and a graph (tree) representation. A
prototype of the software using this method was conceived
in Python. This prototype allows conversion of the timing
data between all three representations and its visualization.

INTRODUCTION
Nowadays large experimental facilities often have a lot

of devices and subsystems which require careful orchestra-
tion and synchronisation. Therefore configuration of timing
subsystem often requires elaborate formation of the time
diagrams. These time diagrams are mostly compiled and
checked manually. Such procedure, being a difficult task
by itself, becomes even more complex when several subsys-
tems are interrelated or specific timing requirements have
to be met. We propose a method for describing, compiling
and storing time diagrams, checking their consistency and
setting the relevant delay values in hardware.

FORMALISM
Time diagram is essentially the relationship between the

times of different events on the installation. Let us assume
for the sake of simplicity that all the clocks are synchronized.
If it is not the case, the time skews could easily be taken
into account by adding some additional equations. We will
also reduce all the units to the common order and omit the
dimension, e.g. we could count all the times in ns. The
relationship between the time of two events could be then
described by the following linear equation:

t2 = t1 + b, (1)

where t2 and t1 – times of the events, and b – is the delay. The
value of b can be positive, specifying that the second event
happens after the first, negative meaning that the second
event happens before the first, or zero, indicating that events
are simultaneous.
Let us consider a time diagram of a traffic light as an

example. It consists of three events: at time moment 0 the
green signal is lit, after 5 seconds, the yellow is ignited
and 5 seconds later the red signal is lit. Let us designate
these events as tgreen, tyellow , tred. Their interrelation is

∗ G.A.Fatkin@inp.nsk.su

described by the following system:
tgreen = 0
tyellow = tgreen + 5
tred = tyellow + 5.

(2)

Using matrix notation, it could be written as:

©­«
1 0 0
−1 1 0
0 −1 1

ª®¬ ©­«
t1
t2
t3

ª®¬ = ©­«
0
5
5

ª®¬ (3)

Let us note that we have numerated the events, threrefore
we have to keep their corresponding names in a vector:

v =
©­«
′′Green′′
′′Yellow′′
′′Red ′′

ª®¬ (4)

In general case, the time diagram of an installation could
be described by a system of linear equations which could be
written in the following form:

At = b, (5)

where t - the vector of the event times, A - the system matrix,
and b - the delay vector. We also need a vector v of the event
names.
For the time diagram to be correct, the matrix A has to

be invertible, in this case the system 5 is solvable. If matrix
A is not invertible, then there was an error in time diagram
specification. Let us formulate several other properties of
the matrix A:

1. Diagonal elements are 1.

2. Other elemets are either 0, or -1.

3. For a large system A must be a sparse matrix (most of
its elements are 0).

Last property is rather important in practice, because it
allows to choose an effective way of the matrix storage and
linear equations system solution.

EVENTS GRAPH
The matrix representation of time diagram is quite conve-

nient for storage and computation of the event times but it
doesn’t allow to visually explore the relationship of events.
Let us deduce the following matrix:

G = E − A, (6)

where E - is an eye matrix of the same dimension as A.
We can note that the matrix G is an adjacency matrix of

a directed graph. The vertex of a graph represents an event

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA087

Timing and Synchronization
TUPHA087

615

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 1: Graph of the events for the traffic light.

and an edge represents a relationship. It is logical to place
a name of the event in the vertex, and to make the weight
of an edge equal to the appropriate element of the vector B.
Thus we get a representation of time diagram as a graph.

For the example let us construct the graph for a traffic
light.

G = ©­«
0 0 0
1 0 0
0 1 0

ª®¬ (7)

This graph is presented at fig. 1. For the inverse trans-
formation of the graph to the system of linear equations we
should calculate:

A = E − G, (8)

and vector b should be the appropriate weights of the graph
edges.
It is easy to show, that because of the properties of the

matrix A, this graph is a directed graph without cycles, such
graphs are called trees. We could identify several trees by
searching for all the connected nodes. That way we can
probably identify subsystems. That will also help us to
determine a casual relationship between events. We are also
planning to use this tree representation for the tree view
control and therefore ease the operator’s work.

TIME CONSTRAINTS
It is usual to impose some constraints on the time dia-

gram. Such constraints could be on the relative position
of the events, total diagram duration, positioning event in
some range, etc. All these constraints could be represented
as one or several linear inequalities. Let us assume for ex-
ample that event t1 should happen in the interval [3, 6], and
event t2 should be later than event t1 from 2 to 5 time units.
This could be represented as the following system of linear
inequalities: {

3 ≤ t1 ≤ 6
2 ≤ t2 − t1 ≤ 5

(9)

For the sake of simplicity we will analyze only non-strict
inequalites, because in practice any strict inequality could
be presented as a non-strict one with slightly moved limit:

a < b↔ a ≤ b − δ, δ << 1. (10)

We can also notice that the sign of the inequality could
easily be changed multiplying left and right parts by −1:

a ≤ b↔ −a ≥ −b. (11)

Using this property we can make all the inequalities use
the same sign. Therefore all the time constraints could be

presented as the following system of linear inequalitis:

Ct ≥ d, (12)

where C - matrix of inequalities, t - event times vector, and
d - constraints vector.
E.g. (9), will have the following form:

©­­­«
1 0
−1 0
−1 1
1 −1

ª®®®¬
(
t1
t2

)
≥

©­­­«
3
−6
2
−5

ª®®®¬ (13)

We can notice that for the large system matrix C would
be sparced (as the matrix A) and would be composed mosly
of 0, 1 and -1. If we have the matrix C and the event times
vector t it is very easy to check whether this vector satisfies
the inequality. We can count the value of the vector Ct, and
check if all the components ar greater than d.

But there is a probability of an error when we specify the
inequalities system. Therefore we have to know whether the
system is solvable, namely if there is any vector t, so that
Ct ≥ d.

Let us present the system in a canonical form. For that let
us introduce the vector of the lag variablesw,thusw = Ct−d.
Then the equivalent problem is formulated as follows:(

E − A
) (

w

x

)
= b,w ≥ 0. (14)

This problem is reduced to the classical problem of a
linear programming being the problem of minimization of
linear functional with some boundary conditions:

min{(c, y),Dy = e, y ≥ 0}, (15)

where we have to assume the objective function c = 0.
To solve this problem we can use an algorythm using the
simplex-method (e.g. linprog from scipy.optimize [1, 2]).
The algorythm will eithr provide us the first vertex of the
convex polyhedron which is the edge of the solutions of the
system of linear inequalities, or it will determine that the
system is unsolvable.

PRACTICAL REALIZATION
For the prototype practical realization a Python program

using numpy [3], scipy and networkx [4] was developed.
The program consists of several parts: Time Editor, Solver,
Export module. Time editor allows to construct matrix A
and vector set b, v by parsing a set of lines in the following
form:

S t a r t = 0
HVCharge = S t a r t + 50 us
A r c I g n i t i o n = S t a r t + 30 ms
Adc0 = A r c I g n i t i o n
Degauss = A r c I g n i t i o n + 70 ms + 5800 us
ModulatorA = Degauss + 200 us − 45 ns
ModulatorB = Degauss + 200 us − 25 ns

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA087

TUPHA087
616

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization

ModulatorC = Degauss + 200 us − 15 ns
ModulatorD = Degauss + 200 us − 10 ns
Modula torE = Degauss + 200 us + 10 ns
Modula torF = Degauss + 200 us + 45 ns
ModulatorG = Degauss + 200 us + 15 ns
ModulatorH = Degauss + 200 us − 30 ns

A parser is capable to convert dimensions, the base unit
is chosen to be 1 ns. The equations editor based on Scintilla
component is provided. The program also allows to create
a list of lines from the system of linear equations. The
conversion is not reversible, as all the coefficients in the
matrix form are added (consider line 5 and further on). An
example of the unifying GUI is shown on fig. 2.

Figure 2: Example of a program window.

To store and create matrix A, a COO (COOrdinate) format
is used. In the Solver it is converted to CSR (Compressed
sparse row) using scipy. The Solver solves the linear equa-
tions system using scipy, or determines that the matrix is
irreversible. The conversion to graph and plotting the graph
is also realized. An example of the resulting plot is shown
on fig. 3.

Figure 3: Events graph.

After the solution is recieved, we have to export the re-
sulting times vector to the control system. For this task, a

Figure 4: Time editor export to TANGO scheme

separate program accepting a vector and channel names in
JSON format was written in Python. Based on mapping
rules it transfers times vector values to the appropriate de-
vices in used control system software. Currently we have a
TANGO implementation written in pyTango for our timing
subsystem. It is schematically shown on fig. 4.

CONCLUSION

A method was formulated for editing the time diagrams
of the complex physical facilities. A prototype realization of
editor and solver was written in Python, and an export mod-
ule for TANGO was prototyped. We are planning to test it in
LIA-20 control system [5]. We also plan to create an export
module from the solver for EPICS and CX-Server control
systems and use it to create time diagrams on functioning
BINP accelerators.
We also plan to realize the check on the diagram con-

sistency using a system of linear inequalities. The ideal
evolution of the program is the creation of an interactive
instrument that will allow: editing time diagrams in any of
the three forms (text representation, matrices or graph) and
plotting the events line of the time diagram.

REFERENCES

[1] George B. Dantzig, Linear programming and extensions, Rand
Corporation Research Study Princeton Univ. Press, Princeton,
NJ, USA, 1963.

[2] S.H. Hillier and G.J. Lieberman, Introduction to Mathematical
Programming, McGraw-Hill, 1995, Chapter 4.

[3] S. van der Walt, S.C. Colbert, and G. Varoquaux. “The NumPy
Array: A Structure for Efficient Numerical Computation”,
Computing in Science & Engineering, vol. 13, pp. 22–30, 2011.

[4] A.A. Hagberg, D.A. Schult, and P.J. Swart, “Exploring network
structure, dynamics, and function using NetworkX”, in Proc.
SciPy 2008, Pasadena, CA, USA, Aug, 2008, pp. 11–15.

[5] G.A. Fatkin et al., “LIA-20 Control System Project”, presented
at ICALEPCS’17, Barcelona, Spain, Oct. 2017, paper TH-
PHA052.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA087

Timing and Synchronization
TUPHA087

617

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

