
EXPERIENCES USING LINUX BASED VME CONTROLLER BOARDS

D. Zimoch*, D. Anicic†, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Abstract
For many years, we have used a commercial real-time

operating system to run EPICS on VME controller
boards. However, with the availability of EPICS on Linux
it became more and more charming to use Linux not only
for PCs but for VME controller boards as well. With a
true multi-process environment, open source software and
all standard Linux tools available, development and
debugging promised to become much easier. Also the cost
factor looked attractive, given that Linux is for free.

However, we had to learn that there is no such thing as
a free lunch. While developing EPICS support for the
VME bus interface was quite straight forward, pitfalls
waited at unexpected places.

We present challenges and solutions encountered while
making Linux based real-time VME controllers the main
control system component in SwissFEL.

SWISSFEL OVERVIEW
SwissFEL is a 720 m long Free Electron Laser facility

at Paul Scherrer Instiut. It provides femtosecond X-ray
laser pulses with 100 Hz repetition rate to currently one
(later up to three) photon beam lines with up to three
experimental stations each [1].

SwissFEL Control System
The control system is based on EPICS [2], currently

version 3.14.12.4. An upgrade to 3.16 is planned. The
over 300 control nodes, IOCs (Input/Output Controllers)
in the EPICS nomenclature, fall into five categories:

1. So called “softIOCs” either not controlling any
hardware directly or only controlling IP network
accessible devices. These run Scientific Linux
6.8 on vmWare virtual hosts. An upgrade to Red
Hat Enterprise Linux 7 is planned.

2. IOxOS IFC1210 VME single board computers
[3] running ELDK 5.2 [4] as provided by the
manufacturer.

3. Camera servers running Microsoft Windows
Server 2008 R2. An upgrade to Windows Server
2016 is planned.

4. DeltaTau Power PMAC motion controllers run-
ning ELDK 4.2 as installed by the manufacturer.

5. Moxa DA-661, DA-662 and DA-662A serial
servers for controlling devices with RS232 or
RS485 serial interface. These run embedded
Linux versions installed by the manufacturer.

Scientific Linux 6.8 is used as well on all Consoles and
many central servers.

IOXOS IFC1210
The IOxOS IFC1210 is a single board computer in

VME 6U form factor. From controls point of view the
main components are a Freescale P2020 PowerPC
processor and a Xilinx Virtex-6 FPGA which are
connected with PCI express. Other on-board components
as well as some extension components are accessible
though I²C.

The FPGA is used by various real-time applications, for
example for low-level RF control. The “TOSCA II”
FPGA framework [5] provides a PCIe bus bridge to three
different hardware resources: User programmable FPGA
functionality (“USER”) with access to two on-board FMC
slots and to rear transition modules for I/O, the VME bus
(“VME”) to access other boards in the same crate, and
additional “shared” DRAM with dual access from the
processor through PCIe and directly from the FPGA user
logic (“SHM”).

Any of these TOSCA resources can map memory in 1
or 4 MB pages to PCIe and further to Linux user space.
All can generate interrupts and all can be used in
programmable DMA transfers.

EPICS INTEGRATION
Integrating devices into EPICS means accessing system

hardware resources from a user space process using one
or more of the following four methods:

1. Exchanging messages with the device. This is
the typical access method for devices connected
over network or a serial bus. In case of the
IFC1210 this applies to the I²C devices.

2. Mapping device memory and registers for direct
access by the CPU. Accessing device registers
through memory maps is much faster than ex-
changing messages with the device. This is an
important access mode for the VME, USER and
SHM resources.

3. Transferring larger data blocks between the
device and program memory efficiently. For
large data blocks using specific DMA hardware
is more efficient than keeping the CPU busy
accessing mapped device memory. This is the
second important access mode for VME, USER
and SHM.

4. Handling device interrupts. Many devices signal
when they need attention. This can be seen as a
special type of message but deserves special
attention because interrupts are asynchronous,
they often do not contain all information why the
device needs attention and thus require a handler
which does additional register access. Interrupts
are relevant for the VME and USER resources.__

* dirk.zimoch@psi.ch
† damir.anicic@psi.ch

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA021

TUPHA021
420

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control Systems Upgrades

VME Bus Access in EPICS
EPICS has a long tradition of using the VME bus and

many EPICS drivers exist to handle a number of VME
based devices using the standard VME API built into
EPICS since release 3.14. Thus once this API is supported
by a new VME controller card, all these drivers can be
used without change. The API provides functions to map
VME address space to program address space and to
register user functions as handlers for VME interrupt
vectors. Thus to implement VME access one has to
implement those API functions.

Difficulty: The EPICS VME API does not cover the
various VME block transfers modes (BLT, MBLT,
2eVME, and 2eSST) which are translated to DMA by the
VME bus bridge. We had to define our own API for
DMA in EPICS.

EPICS Driver Model vs. Linux Driver Model
EPICS typically implements drivers for specific devices

in the IOC program, only expecting the operating system
to provide access to the bus or communication port these
devices are connected to. This has worked well with
vxWorks [6], the real-time operating system EPICS has
originally been developed on, which had no distinction
between kernel and user space and allowed direct access
to the VME bus for memory mapping, interrupt handling
and block transfer.

Difficulty: Real-time systems and Linux have funda-
mentally different ways to approach device access. In
Linux, any access to hardware resources requires a kernel
driver which makes those resources available to user
space by the means of special device files. This driver is
also responsible to handle possible concurrent accesses
from multiple user programs and to manage device re-
sources correctly even if a program is not well-behaving.

User Space Interrupt Handlers in Linux
Because of the very real danger to hang up the whole

system when doing interrupt handling wrong, user space
drivers as used in EPICS are somewhat frowned upon in
Linux [7].

Yet user space drivers are possible – under the right
circumstances. Good examples are user space drivers for
serial (RS232) or network attached (TCP/ UDP) devices
as well as for some USB devices. Here, the operating
system only provides access to the underlying data
transfer hardware (network interface or bus controller) but
does not handle the actual device.

The most important prerequisite is that the device can
be handled independent of the data transfer hardware.
This is indeed the case with TOSCA. A kernel driver can
handle the TOSCA bus bridge, while user space drivers
can handle VME or USER FPGA devices.

The kernel driver needs to be very careful when
handling interrupts because it is so easy to hang up the
system if anything goes wrong here. While USER inter-
rupts are edge triggered, and thus are self-acknowledging,

VME interrupts are level triggered. Typically a device
register needs to be read or written to reset the interrupt.

Because only the user space device driver can acknow-
ledge the interrupt but on the other hand user space cannot
execute while interrupts are active, the kernel driver must
temporarily disable the active interrupt on the bus bridge
until the user space device driver has handled the device.
When done, the device driver must tell the kernel to re-
enable the interrupt.

Still then there is the danger that a buggy device driver
does not handle the device correctly so that the interrupt is
not cleared and the system gets trapped in futile interrupt
handling. Likewise any interrupt source without a
registered user space handler must be disabled or the
system may hang up.

Difficulty: Linux has no API for user space interrupts.
In Linux, interrupts are usually handled solely in the
kernel. A mechanism needs to be defined that passes
control to userspace and that allows a user space driver to
re-enable the interrupt. This context switch adds latency
and jitter to interrupt handling.

User Space DMA in Linux
Reading larger data blocks from devices into EPICS

can benefit a lot from DMA because it unburdens the
CPU from moving data. While the DMA controllers built
into TOSCA perform the data transfer, the CPU can
perform other tasks.

The kernel driver must serialize concurrent DMA
requests from different user space programs making use
of the two available DMA pipelines in TOSCA. After the
transfer has finished, the program must be notified and
success or failure of the operation must be flagged.

Difficulty: There is no standard Linux API to handle
DMA in user space. In Linux, DMA is used only in the
kernel. One reason is that apparently contiguous memory
in user space is often mapped to several non-contiguous
physical memory pages. While this mapping is trans-
parent for memory access by the CPU, it must be taken
into account for DMA. Luckily the TOCSA infrastructure
allows for scattered DMA, so it can be implemented.

VME Bus Access in Linux
The Linux kernel already includes a rudimentary VME

driver framework but with several limitations: Only one
VME bus bridge type is currently supported and neither
interrupts nor memory maps nor block transfers are
available from user space. The only access method is to
pass a message with the address and the data to transfer to
the driver using lseek() and read() or write() system calls.

Difficulty: Because of the context switch between user
space and kernel space involved with any system call, this
is by far too slow for a user space device driver with real-
time performance. Furthermore it does not match the
EPICS VME interface model which expects memory
maps, so that all existing VME device drivers would
require modification.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA021

Control Systems Upgrades
TUPHA021

421

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

I²C Access in Linux
Linux provides a standard I²C user space API. Thus as

soon as the I²C controllers on the IFC1210 are supported
by a conforming kernel driver, all attached devices are
accessible from user space using standard Linux methods.

Difficulty: The first implementation of the I²C con-
trollers was not generic enough to be used with the Linux
I²C API. It made too strict assumptions about connected
devices and did not clearly distinguish device from bus
controller as needed for a generic bus driver.

Manufacturer Provided Kernel Driver
IOxOS, the manufacturer of the IFC1210, has provided

us with a kernel driver together with a user space API.
This driver did not use the Linux VME API nor the Linux
I²C API. Instead it was completely vendor and board
specific. But it gave full user space access to all features
of the TOSCA framework. Our first implementation of
EPICS access to the IFC1210 used this API.

Difficulty: Unfortunately it turned out that driver and
API had serious issues which could not be solved easily.
In particular concurrent access to the memory map confi-
gurations, to DMA and to interrupts was a problem. But
as EPICS is heavily multi threaded, proper locking and
serialization is essential. For example, we need concurrent
access from different processes, not only threads, to DMA
channels. Thus implementing access locking in the pro-
gram was no solution.

Furthermore resources like memory map windows
needed to be released explicitly at program termination.
This has caused problems when a program terminates
abnormally due to errors. Often the whole system then
needed to be rebooted to recover.

“Tosca” Kernel Driver
Lacking the necessary expertise to write or fix a Linux

kernel driver for a complex device like TOSCA, we deci-
ded to outsource that task to a company specialized in
user specific Linux drivers. The result is the “Tosca”
kernel driver.

Special attention had been paid to proper resource
management, including concurrency and automatic clean-
up, and a good real-time performance, while at the same
time trying to follow Linux kernel coding styles as closely
as possible.

This driver is based on the Linux VME API but needed
to modify it heavily in order to implement the required
memory maps and in particular for user space interrupts
and DMA transfers from and to user space program
memory.

Difficulty: The driver developer needs a great amount
of knowledge not only about the Linux kernel and drivers
but as well about the device to implement, in this case the
TOSCA framework. It is not easy to find both in the same
person. This made the development very time consuming
due to misunderstanding, misconceptions and a lot of
communication overhead.

Interfacing the Tosca Kernel Driver
The Tosca kernel driver provides a character device file

(/dev/bus/vme/m0) for memory maps. These include
maps to VME address spaces as well as maps to other
TOSCA resources (USER and SHM). A program can
configure a window into those address spaces with ioctl()
and then mmap() the window to program address space.

The kernel also provides a method to map program
memory or USER or SHM address space to the VME bus.
This allows other VME boards to access resources on the
IFC1210. This “slave” map is configured in a similar way
using a different character device (/dev/bus/vme/s0).

VME and USER interrupts are handled using individual
character device files for each interrupt source. For VME
there is one file for each combination of the 7 interrupt
levels and 256 vectors (/dev/toscavmeeventL.V) while for
USER interrupts there is one file for each of the 16
interrupt lines (/dev/toscausereventL). The file becomes
readable when an interrupt has happened. Thus an inter-
rupt handler thread can wait for one or more interrupts
using functions from the select() family. Writing to the
file acknowledges and re-enables the interrupt.

DMA between any TOSCA resources or program me-
mory is performed using ioctl() on yet another character
device (/dev/dmaproxy0). While many devices allow
DMA only with contiguous physical memory and thus are
often limited to kernel memory, we preferred to be able to
use program memory directly, for example allocated from
the heap with malloc(). This allows to transfer data
efficiently into and out of EPICS records without any
additional copy.

EMBEDDED LINUX
The manufacturer of the board had provided us with a

Linux system based on ELDK (Embedded Linux Devel-
opment Kit). This provides the cross-development
environment and allowed us to easily build a boot loader
(U-Boot), a kernel and a root file system. Also we could
easily install all software packages we needed to run
EPICS and other programs. However, kernel and boot
loader needed several modifications from what ELDK
provides in order to support all system components.

Boot Loader
The boot loader “U-Boot” [8] reads a system configu-

ration (host name, boot server, …) from flash memory,
configures the network port with DHCP and then
programs the FPGA with a downloaded configuration file.
It also downloads and starts the Linux kernel.

The boot loader had already been modified by the
board manufacturer to support the board features like
programming the FPGA. However further modifications
were necessary to allow loading the FPGA configuration
from the network.

Difficulty: Before having access to the network port,
the PCI bus had to be initialized. But the loaded FPGA
configuration file adds a PCI device to the system. It was

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA021

TUPHA021
422

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control Systems Upgrades

necessary to add a mechanism to restart the boot loader
after the FPGA has been configured.

Root File System
For easier software development we decided to use an

NFS mounted root file system shared among all IFC1210
systems. Thus the systems do not need any local storage
besides the boot loader configuration in flash memory.

In order not to disrupt the other systems, a shared root
file system must not be writeable. On the other hand,
Linux routinely writes a number of files, not only in /tmp
and /var but as well in /etc. We solved that problem by
mounting a ram file system to /var and /tmp and linking
files like /etc/resolve.conv to locations on that ram file
system.

Another issue related to the NFS mounted root file
system was how to reliably pass DHCP leases obtained by
the boot loader to the Linux run-time system because the
IP address cannot change while the root file system is
mounted. This may become a problem on busy networks,
for example if EPICS clients flood the network with
search broadcasts so much that DHCP times out.

Difficulty: Such a set-up is not one of the standard
scenarios provided by ELDK. A considerable amount of
work was needed to find a good set-up with a shared NFS
mounted root file system.

Kernel
The kernel must allow control system applications to

run in real-time with strict deadlines in the millisecond
range.

Difficulty: Linux is not designed as a real-time (RT)
operating system. There is an RT-patched kernel [9]
available to improve the situation, but not for each kernel
version and often not for the latest one. Also the RT-
patched kernel is not as widely used as the standard one.
Thus there can be bugs in the RT-patched kernel that are
hard to get fixed. This gets worse if the platform is not
wide spread in the Linux community, as it is the case for
the P2020 CPU on the IFC1210. We have had such
problems with the driver for the network interface build-
in to the processor. It needed several kernel upgrades to
get the problem fixed. However each kernel upgrade
comes with API changes which made it necessary to
modify the Tosca driver.

PERFORMANCE MEASUREMENTS
Interrupt performance tests have been made with a

USER FPGA logic that generates up to 16 interrupts and
starts counters at the same time. A user space interrupt
handler triggers EPICS records to read the counter values.
Histograms of the counter values show the latency
distribution.

Using 16 simultaneous interrupts shows some clear
peaks between 50 and 200 microseconds overlaid with a
bell-shaped distribution between 50 and 1200 micro-

seconds with a broad maximum around 550 microseconds
when using a RT-patched kernel. This is sufficient for
SwissFEL with a repetition rate of 100 Hz. Without RT
patch a low rate of higher latencies in the range of several
milliseconds can be observed which can make reliable
100 Hz operation difficult.

DMA performance depends on transfer direction and
TOSCA resources involved. The most commonly used
scenario is to read data into program memory. Using the
CPU to read 32 bit words reaches 2.5 MB/s from USER
or SHM and 2.0 MB/s from VME (accessing VME
mapped SHM of the same board). DMA is more than 80
times faster, reaching 210 MB/s from USER, 380 MB/s
from SHM and 165 MB/s from VME (using 2eSST
mode) when reading 1 MB blocks. The smaller the block
size the lower is the overall DMA performance because of
an overhead of 133 microseconds for setting up the DMA
transfer. Break even is reached when reading a few
hundred words.

CONCLUSION
Supporting a new hardware platform in Linux is a diffi-

cult and time consuming task which requires up-to-date
knowledge of current kernel developments in addition to
expert knowledge of the hardware to support. The Linux
kernel API changes rapidly and not much help can be
expected from the Linux community for devices which
are unusual or unknown to the mass market or for non-
mainstream CPU types and in particular when not closely
following the standard Linux way of implementing
drivers. Real-time support is rather sporadic and may
cause unexpected problems which can be hard to fix.
Thus a lot of time and effort must be spent before a new
hardware platform can be used reliably in a real-time
control system. So even though Linux does not cost
anything, nothing comes for free.

ACKNOWLEDGEMENT
We thank Stefano Babic (Denx) for the implementation

of the Tosca kernel driver.

REFERENCES
[1] SwissFEL, https://www.psi.ch/swissfel

[2] EPICS, http://www.aps.anl.gov/epics

[3] IFC1210 Data Sheet, http://www.ioxos.ch/images/
pdf/01_datasheet/IFC_1210_DS.pdf

[4] ELDK-5, https://www.denx.de/wiki/ELDK-5

[5] TOSCA II Data Sheet, http://www.ioxos.ch/images/
pdf/01_datasheet/TOSCA_II_DS.pdf

[6] VxWorks,
https://www.windriver.com/products/vxworks

[7] User-space I/O, http://yarchive.net/comp/linux/
userspace_io.html

[8] Das U-Boot, https://www.denx.de/wiki/U-Boot

[9] Real-Time Linux,
https://wiki.linuxfoundation.org/realtime

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA021

Control Systems Upgrades
TUPHA021

423

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

