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Abstract
For many years, we have used a commercial real-time

operating  system  to  run  EPICS  on  VME  controller
boards. However, with the availability of EPICS on Linux
it became more and more charming to use Linux not only
for PCs but for VME controller boards as well.  With a
true multi-process environment, open source software and
all  standard  Linux  tools  available,  development  and
debugging promised to become much easier. Also the cost
factor looked attractive, given that Linux is for free.

However, we had to learn that there is no such thing as
a  free  lunch.  While  developing  EPICS  support  for  the
VME  bus  interface  was  quite  straight  forward,  pitfalls
waited at unexpected places.

We present challenges and solutions encountered while
making Linux based real-time VME controllers the main
control system component in SwissFEL.

SWISSFEL OVERVIEW
SwissFEL is a 720 m long Free Electron Laser facility

at  Paul  Scherrer  Instiut.  It  provides  femtosecond X-ray
laser pulses with 100 Hz repetition rate to currently one
(later  up  to  three)  photon  beam lines  with  up to  three
experimental stations each [1].

SwissFEL Control System
The control  system is based on EPICS [2],  currently

version  3.14.12.4.  An upgrade  to  3.16  is  planned.  The
over 300 control nodes, IOCs (Input/Output Controllers)
in the EPICS nomenclature, fall into five categories:

1. So called “softIOCs” either not controlling any
hardware directly or only controlling IP network
accessible  devices.  These  run  Scientific  Linux
6.8 on vmWare virtual hosts. An upgrade to  Red
Hat Enterprise Linux 7 is planned.

2. IOxOS IFC1210 VME single  board  computers
[3]  running  ELDK 5.2  [4]  as  provided by  the
manufacturer.

3. Camera  servers  running  Microsoft  Windows
Server 2008 R2. An upgrade to Windows Server
2016 is planned.

4. DeltaTau Power PMAC motion controllers run-
ning ELDK 4.2 as installed by the manufacturer.

5. Moxa  DA-661,  DA-662  and  DA-662A  serial
servers  for  controlling  devices  with  RS232  or
RS485  serial  interface.  These  run  embedded
Linux versions installed by the manufacturer.

Scientific Linux 6.8 is used as well on all Consoles and
many central servers.

IOXOS IFC1210
The  IOxOS  IFC1210  is  a  single  board  computer  in

VME 6U form factor.  From controls  point  of view the
main  components  are  a  Freescale  P2020  PowerPC
processor  and  a  Xilinx  Virtex-6  FPGA  which  are
connected with PCI express. Other on-board components
as  well  as  some  extension  components  are  accessible
though I²C.

The FPGA is used by various real-time applications, for
example  for  low-level  RF  control.  The  “TOSCA  II”
FPGA framework [5] provides a PCIe bus bridge to three
different hardware resources: User programmable FPGA
functionality (“USER”) with access to two on-board FMC
slots and to rear transition modules for I/O, the VME bus
(“VME”)  to access other  boards in  the same crate,  and
additional  “shared”  DRAM  with  dual  access  from  the
processor through PCIe and directly from the FPGA user
logic (“SHM”).

Any of these TOSCA resources can map memory in 1
or 4 MB pages to PCIe and further to Linux user space.
All  can  generate  interrupts  and  all  can  be  used  in
programmable DMA transfers.

EPICS INTEGRATION
Integrating devices into EPICS means accessing system

hardware resources from a user space process using one
or more of the following four methods:

1. Exchanging  messages  with  the  device.  This  is
the typical access method for devices connected
over  network  or  a  serial  bus.  In  case  of  the
IFC1210 this applies to the I²C devices.

2. Mapping device memory and registers for direct
access by the CPU. Accessing device registers
through memory maps is  much faster  than ex-
changing messages  with the device.  This  is  an
important access mode for the VME, USER and
SHM resources.

3. Transferring  larger  data  blocks  between  the
device  and  program  memory  efficiently.  For
large data blocks using specific DMA hardware
is  more  efficient  than  keeping  the  CPU  busy
accessing  mapped  device  memory.  This  is  the
second important access mode for VME, USER
and SHM.

4. Handling device interrupts. Many devices signal
when they need attention. This can be seen as a
special  type  of  message  but  deserves  special
attention  because  interrupts  are  asynchronous,
they often do not contain all information why the
device needs attention and thus require a handler
which does additional register access. Interrupts
are relevant for the VME and USER resources.____________________________________________
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VME Bus Access in EPICS
EPICS has a long tradition of using the VME bus and

many EPICS drivers exist  to handle a number of VME
based  devices  using  the  standard  VME  API  built  into
EPICS since release 3.14. Thus once this API is supported
by a new VME controller card, all these drivers can be
used without change. The API provides functions to map
VME  address  space  to  program  address  space  and  to
register  user  functions  as  handlers  for  VME  interrupt
vectors.  Thus  to  implement  VME  access  one  has  to
implement those API functions. 

Difficulty: The EPICS VME API does not cover  the
various  VME  block  transfers  modes  (BLT,  MBLT,
2eVME, and 2eSST) which are translated to DMA by the
VME  bus  bridge.  We  had  to  define  our  own  API  for
DMA in EPICS.

EPICS Driver Model vs. Linux Driver Model
EPICS typically implements drivers for specific devices

in the IOC program, only expecting the operating system
to provide access to the bus or communication port these
devices  are  connected  to.  This  has  worked  well  with
vxWorks [6], the real-time operating system EPICS has
originally  been developed on,  which had no distinction
between kernel and user space and allowed direct access
to the VME bus for memory mapping, interrupt handling
and block transfer.

Difficulty: Real-time systems and Linux have funda-
mentally  different  ways  to  approach  device  access.  In
Linux, any access to hardware resources requires a kernel
driver  which  makes  those  resources  available  to  user
space by the means of special device files. This driver is
also  responsible  to  handle  possible  concurrent  accesses
from multiple  user  programs and to  manage device re-
sources correctly even if a program is not well-behaving.

User Space Interrupt Handlers in Linux
Because of the very real danger to hang up the whole

system when doing interrupt handling wrong, user space
drivers as used in EPICS are somewhat frowned upon in
Linux [7].

Yet  user  space drivers  are possible – under the right
circumstances. Good examples are user space drivers for
serial (RS232) or network attached (TCP/ UDP) devices
as  well  as  for  some USB devices.  Here,  the  operating
system  only  provides  access  to  the  underlying  data
transfer hardware (network interface or bus controller) but
does not handle the actual device.

The most important prerequisite is that the device can
be  handled  independent  of  the  data  transfer  hardware.
This is indeed the case with TOSCA. A kernel driver can
handle the TOSCA bus bridge, while user space drivers
can handle VME or USER FPGA devices.

The  kernel  driver  needs  to  be  very  careful  when
handling interrupts because it is so easy to hang up the
system if anything goes wrong here. While USER inter-
rupts are edge triggered, and thus are self-acknowledging,

VME  interrupts  are  level  triggered.  Typically  a  device
register needs to be read or written to reset the interrupt.

Because only the user space device driver can  acknow-
ledge the interrupt but on the other hand user space cannot
execute while interrupts are active, the kernel driver must
temporarily disable the active interrupt on the bus bridge
until the user space device driver has handled the device.
When done, the device driver must tell the kernel to re-
enable the interrupt.

Still then there is the danger that a buggy device driver
does not handle the device correctly so that the interrupt is
not cleared and the system gets trapped in futile interrupt
handling.  Likewise  any  interrupt  source  without  a
registered  user  space  handler  must  be  disabled  or  the
system may hang up.

Difficulty: Linux has no API for user space interrupts.
In  Linux,  interrupts  are  usually  handled  solely  in  the
kernel.  A  mechanism  needs  to  be  defined  that  passes
control to userspace and that allows a user space driver to
re-enable the interrupt. This context switch adds latency
and jitter to interrupt handling.

User Space DMA in Linux
Reading  larger  data  blocks  from devices  into  EPICS

can  benefit  a  lot  from DMA because  it  unburdens  the
CPU from moving data. While the DMA controllers built
into  TOSCA  perform  the  data  transfer,  the  CPU  can
perform other tasks.

The  kernel  driver  must  serialize  concurrent  DMA
requests from different user space programs making use
of the two available DMA pipelines in TOSCA. After the
transfer has finished,  the program must be notified and
success or failure of the operation must be flagged.

Difficulty: There is no standard Linux API to handle
DMA in user space. In Linux, DMA is used only in the
kernel.  One reason is that apparently contiguous memory
in user space is often mapped to several non-contiguous
physical  memory  pages.  While  this  mapping  is  trans-
parent for memory access by the CPU, it must be taken
into account for DMA. Luckily the TOCSA infrastructure
allows for scattered DMA, so it can be implemented.

VME Bus Access in Linux
The Linux kernel already includes a rudimentary VME

driver framework but with several limitations: Only one
VME bus bridge type is currently supported and neither
interrupts  nor  memory  maps  nor  block  transfers  are
available from user space. The only access method is to
pass a message with the address and the data to transfer to
the driver using lseek() and read() or write() system calls.

Difficulty: Because of the context switch between user
space and kernel space involved with any system call, this
is by far too slow for a user space device driver with real-
time  performance.  Furthermore  it  does  not  match  the
EPICS  VME  interface  model  which  expects  memory
maps,  so  that  all  existing  VME  device  drivers  would
require modification.
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I²C Access in Linux
Linux provides a standard I²C user space API. Thus as

soon as the I²C controllers on the IFC1210 are supported
by a conforming kernel  driver,  all  attached devices are
accessible from user space using standard Linux methods.

Difficulty: The  first  implementation  of  the  I²C  con-
trollers was not generic enough to be used with the Linux
I²C API. It made too strict assumptions about connected
devices and did not clearly distinguish device from bus
controller as needed for a generic bus driver.

Manufacturer Provided Kernel Driver
IOxOS, the manufacturer of the IFC1210, has provided

us with a kernel driver together with a user space API.
This driver did not use the Linux VME API nor the Linux
I²C  API.  Instead  it  was  completely  vendor  and  board
specific. But it gave full user space access to all features
of the TOSCA framework. Our first  implementation of
EPICS access to the IFC1210 used this API.

Difficulty: Unfortunately it turned out that driver and
API had serious issues which could not be solved easily.
In particular concurrent access to the memory map confi-
gurations, to  DMA and to interrupts was a problem. But
as EPICS is heavily multi  threaded, proper locking and
serialization is essential. For example, we need concurrent
access from different processes, not only threads, to DMA
channels. Thus implementing access locking in the pro-
gram was no solution.

Furthermore  resources  like  memory  map  windows
needed to be released explicitly at program termination.
This  has  caused  problems  when  a  program  terminates
abnormally due to  errors.  Often the whole system then
needed to be rebooted to recover.

“Tosca” Kernel Driver
Lacking the necessary expertise to write or fix a Linux

kernel driver for a complex device like TOSCA, we deci-
ded to  outsource that  task  to  a company specialized in
user  specific  Linux  drivers.  The  result  is  the  “Tosca”
kernel driver.

Special  attention  had  been  paid  to  proper  resource
management, including concurrency and automatic clean-
up, and a good real-time performance, while at the same
time trying to follow Linux kernel coding styles as closely
as possible.

This driver is based on the Linux VME API but needed
to modify it heavily in order to implement the required
memory maps and in particular for user space interrupts
and  DMA  transfers  from  and  to  user  space  program
memory.

Difficulty: The driver developer needs a great amount
of knowledge not only about the Linux kernel and drivers
but as well about the device to implement, in this case the
TOSCA framework. It is not easy to find both in the same
person. This made the development very time consuming
due  to  misunderstanding,  misconceptions  and  a  lot  of
communication overhead. 

Interfacing the Tosca Kernel Driver
The Tosca kernel driver provides a character device file

(/dev/bus/vme/m0)  for  memory  maps.  These  include
maps to VME address spaces as well  as maps to other
TOSCA  resources  (USER  and  SHM).  A  program  can
configure a window into those address spaces with ioctl()
and then mmap() the window to program address space.

The  kernel  also  provides  a  method  to  map  program
memory or USER or SHM address space to the VME bus.
This allows other VME boards to access resources on the
IFC1210. This “slave” map is configured in a similar way
using a different  character device (/dev/bus/vme/s0).

VME and USER interrupts are handled using individual
character device files for each interrupt source. For VME
there is one file for each combination of the 7 interrupt
levels and 256 vectors (/dev/toscavmeeventL.V) while for
USER  interrupts  there  is  one  file  for  each  of  the  16
interrupt  lines  (/dev/toscausereventL).  The file  becomes
readable when an interrupt has happened. Thus an inter-
rupt handler thread can wait  for one or more interrupts
using functions from the  select() family. Writing to the
file acknowledges and re-enables the interrupt.

DMA between any TOSCA resources or program me-
mory is performed using  ioctl() on yet another character
device  (/dev/dmaproxy0).  While  many  devices  allow
DMA only with contiguous physical memory and thus are
often limited to kernel memory, we preferred to be able to
use program memory directly, for example allocated from
the  heap  with  malloc().  This  allows  to  transfer  data
efficiently  into  and  out  of  EPICS  records  without  any
additional copy.

EMBEDDED LINUX 
The manufacturer of the board had provided us with a

Linux system based on ELDK (Embedded Linux Devel-
opment  Kit).  This  provides  the  cross-development
environment and allowed us to easily build a boot loader
(U-Boot), a kernel and a root file system. Also we could
easily  install  all  software  packages  we  needed  to  run
EPICS  and  other  programs.  However,  kernel  and  boot
loader  needed  several  modifications  from  what  ELDK
provides in order to support all system components.

Boot Loader
The boot loader “U-Boot” [8] reads a system configu-

ration (host name, boot server,  …) from flash memory,
configures  the  network  port  with  DHCP  and  then
programs the FPGA with a downloaded configuration file.
It also downloads and starts the Linux kernel.

The  boot  loader  had  already  been  modified  by  the
board  manufacturer  to  support  the  board  features  like
programming the FPGA. However further modifications
were necessary to allow loading the FPGA configuration
from the network.

Difficulty: Before having access to the network port,
the PCI bus had to be initialized. But the loaded FPGA
configuration file adds a PCI device to the system. It was
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necessary to add a mechanism to restart the boot loader
after the FPGA has been configured.

Root File System
For easier software development we decided to use an

NFS mounted root file system shared among all IFC1210
systems. Thus the systems do not need any local storage
besides the boot loader configuration in flash memory.

In order not to disrupt the other systems, a shared root
file  system must  not  be  writeable.  On  the  other  hand,
Linux routinely writes a number of files, not only in /tmp
and /var but as well in /etc. We solved that problem by
mounting a ram file system to /var and /tmp and linking
files  like /etc/resolve.conv to locations on that ram file
system.

Another  issue  related  to  the  NFS  mounted  root  file
system was how to reliably pass DHCP leases obtained by
the boot loader to the Linux run-time system because the
IP  address  cannot  change while  the  root  file  system is
mounted. This may become a problem on busy networks,
for  example  if  EPICS  clients  flood  the  network  with
search broadcasts so much that DHCP times out.

Difficulty: Such  a  set-up  is  not  one  of  the  standard
scenarios provided by ELDK. A considerable amount of
work was needed to find a good set-up with a shared NFS
mounted root file system.

Kernel
The kernel  must allow control system applications to

run in real-time with strict deadlines in the millisecond
range.

Difficulty: Linux is not designed as a real-time (RT)
operating  system.  There  is  an  RT-patched  kernel  [9]
available to improve the situation, but not for each kernel
version  and often  not  for  the  latest  one.  Also  the  RT-
patched kernel is not as widely used as the standard one.
Thus there can be bugs in the RT-patched kernel that are
hard to get fixed. This gets worse if the platform is not
wide spread in the Linux community, as it is the case for
the  P2020  CPU  on  the  IFC1210.  We  have  had  such
problems with the driver for the network interface build-
in to the processor. It needed several kernel upgrades to
get  the  problem  fixed.  However  each  kernel  upgrade
comes  with  API  changes  which  made  it  necessary  to
modify the Tosca driver.

PERFORMANCE MEASUREMENTS
Interrupt  performance  tests  have  been  made  with  a

USER FPGA logic that generates up to 16 interrupts and
starts counters at  the same time. A user space interrupt
handler triggers EPICS records to read the counter values.
Histograms  of  the  counter  values  show  the  latency
distribution.

Using  16  simultaneous  interrupts  shows  some  clear
peaks between 50 and 200 microseconds overlaid with  a
bell-shaped  distribution  between  50  and  1200  micro-

seconds with a broad maximum around 550 microseconds
when  using  a  RT-patched  kernel.  This  is  sufficient  for
SwissFEL with a repetition rate of 100 Hz. Without RT
patch a low rate of higher latencies in the range of several
milliseconds  can  be  observed  which  can  make  reliable
100 Hz operation difficult.

DMA performance depends on transfer  direction and
TOSCA resources  involved.  The  most  commonly  used
scenario is to read data into program memory. Using the
CPU to read 32 bit words reaches 2.5 MB/s from USER
or  SHM  and  2.0 MB/s  from  VME  (accessing  VME
mapped SHM of the same board). DMA is more than 80
times faster,  reaching 210 MB/s from USER, 380 MB/s
from  SHM  and  165 MB/s  from  VME  (using  2eSST
mode) when reading 1 MB blocks. The smaller the block
size the lower is the overall DMA performance because of
an overhead of 133 microseconds for setting up the DMA
transfer.  Break  even  is  reached  when  reading  a  few
hundred words.

CONCLUSION
Supporting a new hardware platform in Linux is a diffi-

cult and time consuming task which requires up-to-date
knowledge of current kernel developments in addition to
expert knowledge of the hardware to support. The Linux
kernel  API  changes  rapidly  and  not  much help  can  be
expected from the Linux community for  devices which
are unusual or unknown to the mass market or for non-
mainstream CPU types and in particular when not closely
following  the  standard  Linux  way  of  implementing
drivers.  Real-time  support  is  rather  sporadic  and  may
cause  unexpected  problems  which  can  be  hard  to  fix.
Thus a lot of time and effort must be spent before a new
hardware  platform  can  be  used  reliably  in  a  real-time
control  system.  So  even  though  Linux  does  not  cost
anything, nothing comes for free.
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