
PROCEDURES OF SOFTWARE INTEGRATION TEST AND RELEASE
FOR ASTRI SST-2M PROTOTYPE PROPOSED FOR THE CHERENKOV

TELESCOPE ARRAY
V. Conforti∗,A. Bulgarelli, V. Fioretti, F. Gianotti, G. Malaguti, M. Trifoglio,

INAF – IASF, Bologna, Italy
M. Bartolini, A.Orlati, INAF – IRA, Bologna, Italy

O. Catalano, P. Sangiorgi, INAF – IASF, Palermo, Italy
L.A. Antonelli, S. Gallozzi, S. Lombardi, F. Lucarelli, M. Mastropietro, V. Testa,

INAF – O.A. Roma, Monteporzio Catone, Italy
F. Russo, INAF – O.A., Pino Torinese (Torino), Italy

P. Bruno, A. Costa, A. Grillo, F. Vitello, INAF – O.A., Catania, Italy
R. Canestrari, J. Schwarz, S. Scuderi, S. Vercellone, INAF – O.A. Brera, Merate, Italy

E. Antolini, G. Tosti, Università degli studi di Perugia, Perugia, Italy
for the CTA ASTRI Project

Abstract
The Cherenkov Telescope Array (CTA) project is an inter-

national initiative to build a next generation ground-based
observatory for very high energy gamma-rays. Three classes
of telescopes with different mirror size will be located in the
northern and southern hemispheres. The ASTRI mini-array
of CTA preproduction is one of the small sized telescopes
mini-arrays proposed to be installed at the CTA southern site.
The ASTRI mini-array will consist of nine units based on the
end-to-end ASTRI SST-2M prototype already installed on
Mt. Etna (Italy). The mini-array software system (MASS)
supports the end to end ASTRI SST-2M prototype and mini-
array operations. The ASTRI software integration team
defined the procedures to perform effectively the integration
test and release activities. The developer has to properly
use the repository tree and branches according to the devel-
opment status. We require that the software includes also
specific sections for automated tests and that the software
is well tested (in simulated and real system) before any re-
lease. Here we present the method adopted to release the
first MASS version to support the ASTRI SST-2M prototype
test and operation activities.

INTRODUCTION
The Italian National Institute for Astrophysics (INAF) is

leading the ASTRI project [1] proposed for the ambitious
Cherenkov Telescope Array (CTA) [2]. In the framework of
the small size class of telescopes, a first step of the ASTRI
project is the realization of an end-to-end prototype in a dual
mirror configuration (SST-2M) [3] with the camera at the
focal plane composed of a matrix of silicon photo sensors
managed by innovative front-end and back-end electron-
ics [4]. The ASTRI SST-2M prototype is installed in Italy
at the INAF “M.G. Fracastoro” observing station located
at Serra La Nave, 1753 m a.s.l. on Mount Etna, Sicily [5].
As a second step, as part of the early CTA southern site,
∗ conforti@iasfbo.inaf.it

the project includes the implementation of the ASTRI mini-
array [6] composed of nine ASTRI telescopes. The ASTRI
SST-2M prototype has been earlier verified and tested with
the engineering software released in beta version. Later
on we defined a software integration method to support the
integration test and software release activities for the next
software version [7]. We are adopting an iterative incre-
mental approach for the development of the software, then
we foresee many other software releases before to publish
a stable software version which fulfils the whole ASTRI
system requirements. In addition we plan to use this method
also during the maintenance activities such as debugging
and implementation of new functionalities. Figure 1 depicts
the whole ASTRI software [8]. The Archive & Data Anal-
ysis System runs off site. It provides the management of
permanent archive, the data analysis, the proposal manage-
ment and the tools to access data and proposal [9]. The
Observatory Control System (OCS) provides the graphic
user interface (also for engineering purposes) for the man-
agement of the whole on site system. The resource man-
ager is responsible to start up and monitor the resources in
order to minimize any resource fault. The Logger stores
continuously the system status; the OCS MASTER moni-
tors and controls the operations. The Observatory Control
System uses the on site repository through the TMCDB (the
database for the software configurations and the monitor
points), the Data Capturer (to support the on site analysis)
and the DAQ (Data AcQuisition system) which archives the
science data received from the camera server. The Device
Control, used also by the Observatory Control System, has
in charge the telescope and the ICT (Information and Com-
munication Technologies). This software (written in high
level programming such as C++, Java or Python) is built
within the ACS (Alma Common Software) framework [10].
The Device Control components interact with the device
firmware through OPC-UA [11] and with other ACS com-
ponent through the ACS services. The camera server which
deploys the DAQ software acquires the bulk data from the

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA004

TUPHA004
370

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Systems Engineering, Collaborations and Project Management



Figure 1: ASTRI MASS software architecture.

Camera BEE (Back End Electronic) and performs the pre-
processing [12]. The ICS (Instrument Control System) has
in charge the camera management. The TCS (Telescope Con-
trol System) is responsible for the mount and tracking of the
telescope. It controls the AMC (Active Mirror Control), the
PMC (Pointing Model Camera), the MCS (Mount Control
System) and also satefy, interlocks, networking and power
infrastructures. The CACS (Calibration Auxiliaries Control
System) controls the Auxiliary used for the calibrations of
the devices. The ICT component monitors and controls the
ICT and Power hardware devices.

INTEGRATION DURING THE CODING

Figure 2: Integration-Manager workflow.

We provide to the developers, who produce code through
high level programming, a virtual machine with the envi-
ronment similar to the real machine on site. We require
the developers to test effectively their code before to com-
mit on repository in order to minimize potential errors dur-
ing integration with other software components. We imple-
mented the integration-manager workflow [13] on Git repo
(see Fig. 2) in order to control the software versions and
to support the developer who executes the local test of his
component which interfaces other components. During the
coding period the developer commits in the local (private)

development branch. Once the software is ready for the re-
lease, the developer pushes the code to the remote (public)
development branch. The integration manager clones the
public development branches and performs the integration
tests. In case of failure the developers have to fix any bug, in
order to eventually close with success the integrations tests.
Finally the integration manager merges the development
branch on the master branch and pushes the codes into the
remote master branch (blessed repository). The developers
pull the whole last software version from the blessed reposi-
tory in their development branch to continue the coding for
the next release. The interface between the OPC-UA server
installed on the hardware device and the OPC-UA client that
is part of the ACS component is defined through an ICD
(Interface Control Document) created with a predefined for-
mat. The ASTRI software has to provide the management of
many hardware devices. In order to reduce the coding time,
we implemented code generator software (python script)
that takes as input the ICD (either in xls or xml format) and
provides the ACS component which includes the OPC-UA
client. We also implemented the OPC-UA server simulator
that get information about the device to simulate from a con-
figuration file provided by the code generator. In this way
the developer executes very quickly the local software test
without any real hardware. We require also the developer
to implement the test for the business logic layer. The test
consists of one or more programs that can be repeated by
whatever user.

The test suite has to be run by the developer before to
commit to the repository the software with the new code.
Furthermore ACS includes TAT (Tool for Automated Tests)
that is a framework which can run a test suite with only one
command and reports the result in a simple and clear way:

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA004

Systems Engineering, Collaborations and Project Management
TUPHA004

371

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 3: ASTRI continuous integration with Jenkins.

the word PASSED or FAILED is printed to the standard
output. Although the ASTRI developers do not push new
software with very high frequency, we keep continuously
monitored, through a Jenkins server, the software status in
order to detect very quickly any breaking build in our devel-
opment work. We implemented two Jenkins jobs for each
software component: the prime compiles the last version
on the development branch, the latter runs the unit test suite
through TAT. Figure 3 shows the Jenkins page for the ASTRI
project. The first column is the status of the build (the build
broken is marked with a red bullet); in the second column
there is the weather report showing aggregated status of
recent builds; follow the name of the job. The integration
manager and the developers can display in any moment the
details about the continuous integration through a jenkins
server installed at the Astronomycal Observatory of Catania.

THE INTEGRATION TESTS
We plan an integration test before any software release.

Before we require that the component version candidates for
the release locally passed the tests. We execute the prelimi-
nary tests on the ASTRI test bed [14]. The test bed is a set
of virtual machines which reproduce the same real machines
on site. The virtual machines in the test bed have the same
configuration (networking, users, operating system, DNS)
as the one of real machines so to perform effective tests. All
the machines in test bed as well as those on-site have the
ASTRI git access read-only in order to update the software
version. The test bed has been installed in the INAF IASF
Bologna server room, the same server room which will host
the CTA Headquarters servers. The goal of these tests is
to verify the software setup, and the interactions among
software components.
Figure 4 depicts the ASTRI deployment model of the

Telescope System as example of the ASTRI software deploy-
ment model. The nodes with stereotype «SL 6.7» are server
machines equipped with Scientific Linux at the version 6.7.
During the boot of this machine, we launch the ACS con-
tainer services in order to exploit the facilities of ACS to run

the software in distributed mode. We deploy on the machine
slntcs the ACS java component PMC, AMC and THCU
(Telescope Health Control Unit) and TCU (Telescope Con-
trol Unit) which implement the MCS. The machine slndaq
is the camera server and we install there the DAQ software.
Also the ACS components DAQ Controller and Camera Con-
troller (written in java), and DAQ Monitor (written in C++)
are deployed on this machine. The nodes with stereotype
«device» denote the hardware where is installed both the
firmware and the OPC-UA server to interface the ACS com-
ponents. The camera device is made of the firmware for the
BEE and the FEE (Front End Electronics). We created an
installer project for the management of the software com-
ponents which exploit the ACS services. In particular it
provides the functionalities to download the software either
from development or master branch. In this project we con-
figure also the parameters to connect the hardware devices,
the parameters for the monitoring and the details for the
deployment. We install this project and the ACS software
components on a dedicated machine where runs the ACS
manager that is the responsible for the software deployment.
All the other machines are configured to link properly the
node where runs the manager. Once the test succeeds on the
test bed, the next step is to perform the integration test on-
site. During this test we verify the setup procedures on the
real servers, the interfaces among the software components,
and here we have also to verify the connections between
the software and the firmware installed in the hardware de-
vices. This integration test is part of the ASTRI project AIV
(Assembly Integration and Verification) plan.

THE SOFTWARE RELEASE
We officially release the software version when all tests

are successfully completed on site. The integration manager
updates the installer in order to download the specific tested
version of software component. Then the integration man-
ager tags and pushes on the master branch all the updated
software on the repository. We apply a specific pattern to the
tag of the release that is V.X.Y.Z, where X denotes a major
release not always compatible with the previous version, Y
means a minor release which includes new capabilities and
it is compatible with the previous version, and Z is used
to point the bug fixes. These activities are reported in the
release document which provides an overview of that ver-
sion, the details and capabilities for every component which
constitute the version. In this document we also refer to the
test reports and user manuals. In addition we published a
web based application (see Fig. 5) built on redmine software,
to collect the issues, to require new feature or to report any
bug. Redmine provides also the functionalities to track the
issue status.

CONCLUSION
The procedures presented in this paper, concerning the

integration test and software release for the ASTRI project
have been applied with success to the first three software

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA004

TUPHA004
372

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Systems Engineering, Collaborations and Project Management



Figure 4: UML deployment diagram of the ASTRI telescope system.

Figure 5: ASTRI web application for the release manage-
ment.

releases: V.0.1.0 (March 2017), V.0.1.1 (June 2017), V.0.2.0
(July 2017). In those periods we perceived also the benefit
coming from this methodology: we provide effective test
tools to perform preliminary local tests before the integration,
and we test the whole software on a simulated environment.
In this way we reduce the testing time on site, and then the

dead time for the other AIV actitivies and during the ob-
servations when the ASTRI telescopes will be in operation.
The second benefit is that in case of failure (either software
or hardware) we are able to replace very quickly the current
software version with a previous and stable version. Nev-
ertheless we are working to further improve the integration
procedure adding such as the methods and tools to perform
the code assessment. The ASTRI integration procedure is
being used on the ASTRI SST-2M prototype and will be
used on the ASTRI mini-array. We may share the ASTRI
integration lesson learned with the CTA software team to
support the construction phases and the operations.

ACKNOWLEDGEMENT
This work is supported by the Italian Ministry of Ed-

ucation, University, and Research (MIUR) with funds
specifically assigned to the Italian National Institute of
Astrophysics (INAF) for the Cherenkov Telescope Ar-
ray (CTA), and by the Italian Ministry of Economic De-
velopment (MISE) within the "Astronomia Industriale"
program. We acknowledge support from the Brazilian
Funding Agency FAPESP (Grant 2013/10559-5) and from
the South African Department of Science and Technol-
ogy through Funding Agreement 0227/2014 for the South

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA004

Systems Engineering, Collaborations and Project Management
TUPHA004

373

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



African Gamma-Ray Astronomy Programme. We gratefully
acknowledge financial support from the agencies and or-
ganizations listed here: http://www.cta-observatory.
org/consortium_acknowledgments. This work was
conducted in the context of the CTA ASTRI Project.

REFERENCES
[1] M.C. Maccarone, “ASTRI for the Cherenkov Telescope Ar-

ray”, in Proc. 35th International Cosmic Ray Conference,
Bexco, Busan, Korea, July 2017.

[2] B.S. Acharaya et al., “Introducing the CTA concept”, Else-
vier, Astroparticle Physics, TeV Gamma-Ray Astronomy, Air
showers, Cherenkov Telescopes, vol. 43, pp. 3–18, 2013.

[3] R. Canestrari et al., “The ASTRI SST-2M prototype for the
Cherenkov Telescope Array: manufactoring of the structure
and the mirrors”, in Proc. SPIE Astronomical Telescopes +
Instrumentation, Montreal, Quebec, Canada, July 2014.

[4] O. Catalano et al., “The camera of the ASTRI SST-2M pro-
totype for the Cherenkov Telescope Array”, in Proc. SPIE
Astronomical Telescopes + Instrumentation, Montreal, Que-
bec, Canada, July 2014.

[5] M.C. Maccarone et al., “The site of the ASTRI SST-2M
Telescope Prototype”, in Proc. 33th International Cosmic
Ray Conference, Rio de Janeiro, Brazil, July 2013.

[6] G. Tosti et al., “The ASTRI/CTAmini-array software system”
in Proc. SPIE Astronomical Telescopes + Instrumentation,
Montreal, Quebec, Canada, July 2014.

[7] V. Conforti et al., “Software Integration for the ASTRI SST-
2M prototype proposed for the Cherenkov Telescope Array”,

in Proc. 36th Astronomical Data Analysis Software and Sys-
tems, Trieste, Italy, October 2016.

[8] A. Antolini et al., “Telescope Control System of the ASTRI
SST2M prototype for the Cherenkov Telescope Array”, pre-
sented at the 16th International Conference on Accelerator
and Large Experimental Physics Control Systems, Barcelona,
Spain, October 2017, paper THMPL04.

[9] S. Lombardi et al., “ASTRI SST-2M prototype and mini-array
simulation chain, data reduction software, and archive in the
framework of the Cherenkov Telescope Array”, in Proc. 35th
International Cosmic Ray Conference, Bexco, Busan, Korea,
July 2017.

[10] G. Chiozzi et al., “TheALMAcommon software: a developer-
friendly CORBA-based framework”, in Proc. SPIE Astronom-
ical Telescopes + Instrumentation, Kona, United States, July
2004.

[11] OPCUA 2016, OPC Foundation Unified Architecture,
https://opcfoundation.org/about/
opc-technologies/opc-ua/

[12] M.C. Maccarone, T. Mineo, M. Capalbi, V. Conforti, and M.
Coffaro, “Pre-selecting muon events in the camera server of
the ASTRI telescopes foe the Cherenkov Telescope Array”,
in Proc. SPIE Astronomical Telescopes + Instrumentation,
Edinburgh, United Kingdom, August 2016.

[13] GIT distribute workflows, https://git-scm.com/book/
it/v2/Distributed-Git-Distributed-Workflows

[14] F. Gianotti et al., “The ICT monitoring system of the ASTRI
SST-2M prototype proposed for the Cherenkov Telescope
Array”, in Proc. SPIE Astronomical Telescopes + Instrumen-
tation, Edinburgh, United Kingdom, August 2016.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA004

TUPHA004
374

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Systems Engineering, Collaborations and Project Management


