
DEVELOPMENT OF MQTT-CHANNEL ACCESS BRIDGE

J.Fujita†, M. Cherney, Creighton University, Omaha, NE, USA
D. Arkhipkin, J. Lauret, Brookhaven National Laboratory, Upton, NY, USA

Abstract
The integration of the Data Acquisition, Offline Pro-

cessing and Hardware Controls using MQTT has been
proposed for the STAR Experiment at Brookhaven Na-
tional Laboratory. Since the majority of the Control Sys-
tem for the STAR Experiment uses EPICS, this created
the need to develop a way to bridge MQTT and Channel
Access bidirectionally. Using CAFE C++ Channel Access
library from PSI/SLS, we were able to develop such a
MQTT-Channel Access bridge fairly easily. The prototype
development for MQTT-Channel Access bridge is dis-
cussed here.

INTRODUCTION
Most of the STAR (Solenoidal Tracker At RHIC) Ex-

periment Control System has been based upon the EPICS
(Experimental Physics and Industrial Control System)
from the beginning. Currently roughly 60,000 parameters
are controlled and monitored with EPICS. Recently,
MQTT [1] has been chosen to integrate the STAR DAQ,
Offline, and Control Systems. As there was no MQTT-
Channel Access bridge available, we needed to develop
one.

Figure 1: Schematics of the STAR Control Integration
plan.

Figure 1 shows the schematic diagram of the STAR In-
tegration plan. [2] The MQTT Broker further publishes
the data to the STAR Generic network and the data will
be accessible via WebSocket such that it can be viewed
via a web browser.

At the moment, the existing EPICS infrastructure will
remain as it is. In the STAR Control Room, we use vari-
ous EPICS tools such as Alarm Handler [3], MEDM [4],
and Control System Studio [5] during the commissioning
and the data-taking period of the experiments as we have
been doing for the past 17 years. EPICS to MQTT is a
first stage transition but new detector sub-systems seem to
be going the native MQTT way.

MESSAGE QUEUE TELEMETRY
TRANSPORT: MQTT

MQTT was initially developed by IBM and Eurotech in
1999. Originally, it was intended for an oil pipeline to
satellite communication link. It was internally used and
maintained by IBM until 2010. In 2010, the version 3.1
was released royalty free. In 2013, International Standards
Organization OASIS begin officially advocating MQTT
as a lightweight, open source solution for device to device
communications. In 2016, ISO officially approved
MQTT version 3.1.1 as an ISO standard (ISO/IED
20922). MQTT has been very popular choice among
Internet of Things (IoT) as the communication protocol.

MQTT protocol typically runs on top of TCP/IP as well
as UDP and Zigbee. It is relatively simple and easy to
implement. It is lightweight and bandwidth efficient. It is
based upon a publish and subscribe architecture and the
Quality of Service (QoS) is built-in to the protocol. Un-
like Channel Access, it requires a Message Broker that
functions as a communication hub on the network. In
MQTT, the data are called as messages. The message is
in ASCII based format. MQTT also use topic as filter and
categorize the messages in the broker. The topic could be
used by the clients to get only the information they need.
Figure 2 is the MQTT schematic diagram illustrating the
overall MQTT concept.

Figure 2: MQTT concept diagram.

MQTT-CHANNEL ACCESS BRIDGE
The prototype MQTT-CA bridge was written using

standard Channel Access C library. While it is possible to
accomplish the same in Python or Java, C was chosen, as
that provided more powerful sets of libraries as well as
the request from one of the STAR experts from a different
system. Since we needed an MQTT library, we chose the
Paho [6] library, which supports C/C++ as well as Python,
Java and many others. For EPICS Channel Access, we
used the standard EPICS portable Channel Access C li-
brary that comes with EPICS Base 3.14.

The message broker needed for the MQTT had already
been chosen by the time the Control Group was involved
for the project; the STAR Experiment has adopted Apache
ActiveMQ Apollo [7] for the message broker.

The first prototype was written in about two weeks, in-
cluding the time to setup the broker and understand the

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA198

THPHA198
1916

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

basics of how MQTT works. We started with very little
knowledge in MQTT, but were able to write something
that worked fine in a relatively short time. This also was
the first time the STAR Control Group wrote a standalone
application with the Portable Channel Access C Library.

The MQTT-Channel Access bridge consists of two
parts; the Subscriber Component and the Publisher Com-
ponent. In both cases, in the MQTT message is formatted
in JSON format.

The Subscriber Component subscribes the data values
via MQTT, then, publishes the value to EPICS Channel
Access, so that it could be monitored and archived using
the EPICS tools. Figure 3 shows the how the MQTT
message is converted to an EPICS database record by the
Subscriber component.

Figure 3: MQTT-Channel Access Subscriber Component
Schematic.

The Publisher Component gets the EPICS Process Var-
iables via Channel Access, and then publishes the values
to the MQTT Broker. This is basically the reverse of the
Subscriber Component. Figure 4 below shows how the
EPICS database record is converted to the MQTT mes-
sage.

Figure 4: MQTT-Channel Access Publisher Component
Schematic.

CAFE
Channel Access bridge. Since the Control Group wants

students to participate in the project, it is important to
make the code easily understandable by the students in-
volved in the research project. Having worked with the
EPICS standard portable Channel Access library in C, the
group felt that it was not necessary the easiest library to
use. In addition, we have found that for many students,
C++ is a preferred language of choice over C.

As we reviewed the different options for the Channel
Access library, we came across CAFE (Channel Access
interFacE) [8]. It is a C++ interface that provides a mod-
ern, multifaceted interface to the EPICS Channel Access
library. Once compiled, the CAFE library has proven to
be one of the easiest libraries to use, as most function
calls behave just like any other from standard C++ librar-
ies.

While rewriting the code with CAFE took some time
for the Control Group to accomplish, we were able to
complete the task in a month or so. Most of the issues
encountered had to do with to understanding what func-
tion call was needed for CAFE in C++.

PERFORMANCE EVALUATION
Some performance testing has been attempted during

the prototype phase. We prepared four EPICS IOCs on
two Linux computers and one VME CPU running
RTEMS on one network subnet. One of the Linux com-
puters also had the MQTT-Channel Access bridge pro-
grams installed. On a different subnet, we prepared the
MQTT broker. On the third subnet, we prepared MQTT
clients that receive and send the data.

Since this involved three separate subnets and several
computers (and a VME board), we were not able to make
a quantitative measurement that would have meaning
outside of this specific context. The MQTT-Channel Ac-
cess bridge programs operated successfully at a rate of
1000 messages/second, which is exceeds the current re-
quirements of the STAR Control System.

In the current production system, around 5000 messag-
es per second are going through the system at peak times,
and about 1000 message per second on average.

CONCLUSION
MQTT allows the integration of the existing STAR

Control with the rest of the STAR systems. Given the
simplicity of MQTT, it was not very hard for a MQTT
beginner to implement into a standalone portable Channel
Access application. By using CAFE, we believe we were
able to lower the initial learning curve of Channel Access
for inexperienced students to some level of Channel Ac-
cess programming. Using MQTT also possibly allows the
deployment of different devices such as IoTs to be easily
incorporated into the existing control system.

ACKNOWLEDGEMENT
This work was supported in party by the Office of Sci-

ence of the United States Department of Energy and the
College of Arts & Science of Creighton University. We
would also like to thank the STAR Collaboration and the
EPICS Community. In particular we would really like to
thank Dr. Jan Chrin from Paul Scherrer Institute for work-
ing on CAFE library.

{
 “PV”:“sysuser:aiExample”
 “Host”: “epicsIOC1”
 “data”: “10”
}

record(ai, “sysuser:aiExample”)
{
 field(INP,
“sysuser:calcExample.VAL NPP
NMS”)
 field(HOPR, “10”)
 field(LOPR, “0”)
 field(HIHI, “8”)
 …
 … sysuser:aiExample.VAL
}

MQTT Message EPICS Process Variable

record(ai, “sysuser:aiExample”)
{
 field(INP,
“sysuser:calcExample.VAL NPP
NMS”)
 field(HOPR, “10”)
 field(LOPR, “0”)
 field(HIHI, “8”)
 …
 … sysuser:aiExample.VAL
}

The host name is obtained
through Channel Access

{
 “PV”:“sysuser:aiExample”
 “Host”: “epicsIOC1”
 “data”: “10”
}

EPICS Process Variable MQTT Message

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA198

Experiment Control
THPHA198

1917

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

REFERENCES
[1] MQTT, http://mqtt.org/.

[2] D Arkhipkin and J Lauret, “STAR Online Framework: from
Metadata Collection to Event Analysis and System Con-
trol”, J. Phys.: Conf. Ser., vol. 608, p, 012036, 2015,
doi:10.1088/1742-6596/608/1/012036

[3] Alarm Handler,
http://www.aps.anl.gov/epics/extensions/alh/.

[4] MEDM,
http://www.aps.anl.gov/epics/extensions/medm/.

[5] Control System Studio,
http://controlsystemstudio.org/.

[6] Paho, http://www.eclipse.org/paho/.

[7] Apache ActiveMQ Apollo,
https://activemq.apache.org/apollo/.

[8] CAFE, https://ados.web.psi.ch/cafe/.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA198

THPHA198
1918

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

