
RADAR 2.0, A DRAG AND DROP, CROSS PLATFORM CONTROL

O. O. Andreassen, J. W. Rachucki, R. M. Knudsen, CERN, Geneva, Switzerland

Abstract
In the ever-growing control system at CERN, there is a

need for having an easy to use, yet fast and flexible tool
that interfaces with all the different middleware and
communication interfaces in the accelerator, experiments
and technical infrastructures. With RADAR 2.0 we want-
ed to address this issue, making a LabVIEW based, drag
and drop visual tool that hides much of the system com-
plexity from the user and within seconds gives the opera-
tor a ready to use, fully functional control system GUI.
RADAR 2.0 interfaces with the CERN Middleware
(CMW), the CERN Accelerator and Logging system
(CALS), OPC-UA and DIM. With its class based imple-
mentation it can easily be extended to other data sources
(Files, Databases, middleware) on demand. This paper
reports how the implementation was done, the architec-
ture, underlying technology and an outlook to other pos-
sible applications.

MOTIVATION
Getting the knowledge needed to properly analyse or

interact with the Large Hadron Collider (LHC) control
system can be a lengthy process which in many cases
requires years of experience. The information on where to
connect and how to interact with devices is often domain
specific knowledge, spread across many different equip-
ment experts and teams. In addition, many of the tempo-
rary users and operators at CERN are professors, students
and collaborating partners that only stay for a short time,
which can make interacting with the infrastructure quite
an undertaking [1][2].

Many initiatives have been done to consolidate and re-
duce the diversity of the control system, which has re-
duced the complexity and eased access over the years, but
it is still not straight forward to retrieve information re-
garding device configuration, calibration, response and
behaviour, especially in cases where equipment have
either direct or indirect correlations [1][3][4][5]. RADAR
2.0 tries to address these issues by combining all the ac-
celerators devices and data sources in one interface and
automatically detect, and adapt to the specific interface of
the equipment. In addition, the components created with
RADAR 2.0 can be saved, customize and shared across
projects and users. This, over time, aims to ease the effort
of mapping equipment specificities, allowing the opera-
tors to focus on commissioning and running the machine.

BACKGROUND
The application core of the RADAR 2.0 Drag and Drop

toolkit was derived from two other applications called
UNICOS in LabVIEW (UiL) [1][6] and RADAR 1.0 [7].

UNICOS in LabVIEW
UiL was introduced as a lighter, less expensive alterna-

tive to UNICOS [1]. For some specific projects (small or
initial prototypes not connected to accelerator operation
or located outside CERN) a more customisable supervi-
sion application using LabVIEW was an attractive alter-
native. UiL provides a set of customisable re-usable com-
ponents, devices and utilities [1].

Figure 1 : UiL Example Application.

RADAR 1.0
RADAR was initially developed as an extension to the

CERN Open Analog Signals Information System (OA-
SIS) which is a highly configurable virtual oscilloscope
that makes it possible to configure acquisition hardware
with wide analogue bandwidth and flexible distributed
triggering schemes across the CERN accelerators [2].

RADAR later evolved beyond interfacing only with
OASIS, and became a connectivity tool that interfaced
with all CERN devices using the CERN Middleware
(CMW) [2][8].

RADAR 2.0
RADAR 2.0 consists of several stand-alone modules

which intercommunicate. The main parts are described in
the architecture section below. There are two modes to the
application: Development and run. In development mode,
the user interfaces with a dedicated infrastructure which
can be deployed on any server. In run mode, the applica-
tion acts as a stand-alone executable which either inter-
faces with the CERN and RADAR infrastructure or di-
rectly with the dedicated devices.

Workflow and Development
The users’ starting point when developing with RA-

DAR 2.0 is the project generator pane. The user is pre-
sented with a login screen (See Figure 2) where he or she

SYSTEM DESIGN SOFTWARE

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA185

User Interfaces and User eXperience (UX)
THPHA185

1873

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

navigates to the personal workspace, selects an existing or
new project and location where to save. If an existing
configuration is selected, the connection information is
either retrieved from a dedicated configuration file or the
user database, depending on what the user selects.

Figure 2: Starting the Application.

Building an application is drag and drop based. In the
RADAR 2.0 Project window, the ‘Project Manager’ con-

tains all object types, organized by accelerator domain, as

well as other custom assemblies defined by the user.

During the creation and configuration of the widgets,
all items are given a type identifier (based on a GUID),
which is used internally by the RADAR 2.0’s scripting
engine. This acts as a hook used by the application for all
animations and user interactions with the widget.

Figure 2: Device Configuration Panel.

To add specific devices into a front panel, the user
drag-and-drops a widget onto the Front Panel which trig-
gers a window where the user can select the object the
widget must be linked to, choose an object representation
(Graph, text, table etc.), and what device reference to
connect to (Figure 3). Once configured, the widget is
animated on the applications front panel.

Figure 3: RADAR 2.0 Development Workspace.

LabVIEW Scripting
All the generated objects in RADAR 2.0 rely heavily

on LabVIEW VI Scripting. LabVIEW VI Scripting helps
you programmatically generate, edit and inspect Lab-
VIEW code. It gives you access to LabVIEW’s internal
server classes, properties, and methods so you can pro-
grammatically create, move, and wire objects within the
graphical environment [9].

Architecture
The architecture is realised using several commercial

off-the-shelf software toolkits such as LabVIEW, Lab-
VIEW Datalogging and Supervisory Control Module
(DSC), REDIS and NoSQL [10][11].

The general module architecture can be seen in Figure
4. The application is built around a client, which sub-
scribes, caches and re-serves data throughout the applica-
tion using CERNs middleware (CMW) as a peer to peer
communication layer. The most resent updates are stored
and broadcasted through an internal notifier, which can be
read (by reference) in any sub module of the application.
The larger data sets (arrays and vectors for trends and
graphs) are stored in an internal queue, and indexed by
object type identifiers.

Figure 4: RADAR 2.0 Architecture.

Device Groups and Components
A device group or specific custom made components

can be saved as a widget and re-used by all users. Once a
configuration has been made, the user can export this
design to a custom SQL database which can be set up to
facilitate custom grouping and access. The current im-
plementation of RADAR 2.0 supports standard MySQL
and mariaDB databases, but could easily be extended to
other storage forms if needed [1][5][10][11].

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA185

THPHA185
1874

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

Communication
The communication between RADAR 2.0 and the

CERN infrastructure is based on an extendible virtual
class that support any add-on such as CMW, OPC UA,
and JAPC via the CERN Rapid Application Development
Environment (RADE) framework (See Figure 5) [7].

The internal application data is serialized to an internal
common syntax. The data can be converted to string,
Time/Value based data or LabVIEW clusters.

RADE is a platform- independent, service-oriented ar-
chitecture specification that allows the exchange of data
in the industrial automation space [7].

Figure 5: Communication.

Data Flow
Data in RADAR 2.0 is primarily stored and accessed

through the use of internal LabVIEW notifiers. For trends,
the data is queued, in order to accurately display all data
from any device without losing data points in the graph.
The trends and events also access the REDIS Cache and
NoSQL backend for the viewing of historical data (typi-
cally with a backlog of one week).

Archiving
RADAR 2.0 has the capability to archive all live data

and settings. When the user selects this option in the con-
figuration for a particular device, the data is automatically
cached and stored. RADAR 2.0 archives its data locally in
MongoDB, a cross-platform document-oriented database.

In addition, a central cache is stored in a REDIS
backend which makes it possible to interconnect several
instances of RADAR 2.0 without duplicating the device
connection.

MongoDB eschews the traditional table-based relation-
al database structure in favour of JSON-like documents
with dynamic schemas, making the integration of data in
applications such as RADAR 2.0 easier and faster [7][10].
The method used to archive data is class based and in-
tended to support multiple sinks through class overrides
in the future.

Data Caching and Publication
The REDIS and Database caching used in RADAR 2.0

has a built-in added feature that the data one client sub-
scribes to can be re-published either as a new CMW pub-
lication or as a REDIS, reducing the load and connections
used on the front-ends. The RADAR 2.0 connection
backend only lets one device connect to a source (unless
the sampling frequency differs) [1][7].

VALIDATION
The initial development was tested in terms of connec-

tivity with 30 different real devices, testing interfaces
across different front ends and databases (from the CALS
service).

In addition, a few hundred simulated virtual channels
were used to test scalability. The test machine was a
standard HP Compaq 8000 elite with 4Gb of RAM run-
ning Windows 7 64bit. The RADAR 2.0 LabVIEW in-
stance was running in 32bit mode. The test bench had 200
active channels to the testbed and all the data was logged
to its MongoDB and REDIS archive. No significant in-
crease in CPU (was at 30% when starting and stayed at
35% after the application ran) or Memory (used 200MB
at start and had 350 Mb after 48h run) was noticed while
running the test. The test also provoked a random alarm
every 30 minutes on random channels, and stored all the
data while running. The update frequency was set to max-
imum 1 point every half second, fixed.

The results in terms of animation and refresh rate were
satisfactory, having several dozens of devices in the same
panel refreshing continuously. Interaction with the devic-
es (via dedicated buttons) in the widgets associated to the
different devices was also smooth and efficient.

The current RADAR 2.0 release only supports a single
database archive per application instance. This limits the
cross-application interaction although this will be ad-
dressed in next releases.

MAINTENANCE AND UPGRADES
Maintaining the underlying communication libraries

and dependencies of RADAR 2.0 will depend on the
release cycle of the RADE framework. Compiled binaries
will continue to function when using the 2 tier RADE
Service bridge, but direct connections (applications com-
munications without going through the RADE Services
application bridge) will have to be re-compiled whenever
there are changes in the API. We plan to do this partly
automatically trough the automated build system used for
our LabVIEW applications [7].

CONCLUSION
The current release of RADAR UiL has been success-

fully deployed and is being used as a prototype at CERN.
The combination of LabVIEW’s intuitive drag and drop-
based interaction, together with the similar look and feel
of LabVIEW makes RADAR 2.0 a good choice for small
to medium sized control and supervision applications.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA185

User Interfaces and User eXperience (UX)
THPHA185

1875

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

RADAR 2.0 has all of the core LabVIEW and RADE
features, but hides much of the overhead development
effort through its drag and drop interface. This makes it
possible to make anything from quite simple monitoring
interfaces in mere minutes while still having the possibil-
ity to extend and expand the application to much more
advanced applications.

RADE was used as the communication layer between
LabVIEW and the CERN infrastructure, which means that
whenever an interface is added to the RADE catalogue, it
becomes readily available to the RADAR 2.0 users, en-
suring connectivity and compatibility in the future.

Our performance tests show that RADAR 2.0 can han-
dle several hundred connections running simultaneously
without any significant load to the CPU.

The main drawback with the current design is its device
name based interface. If a device name changes both in
name or in nature, the user will have to re-create these
objects by re-defining the interface. We hope this will be
solved by sharing widgets in the “community” database
backend, meaning that once someone has
adapted/changed one interface, other users will benefit
from this change and inherit the new interface in their
applications.

FUTURE PLANS
A consolidation phase is the first step to make the RA-

DAR 2.0 a solid and deployable solution. Up to now all
the concepts have been validated during the development
and test phases. The plans include the development of a
full catalogue of shared widgets for most of the popular
sensors, actuators and control devices at CERN. The
alarm and event managers will incorporate filtering capa-
bilities and the diagnostics of the front-ends will be
properly interpreted and shown to the user.

Support of future connections will be added, but we
still have to decide if this will be done at the local server
level or with the RADAR 2.0 client connecting to multi-
ple servers as a service.

Cross communication between different instances of
RADAR 2.0 backends still needs some improvements in
terms of different sampling rates and use cases (on change
or on demand)

We are also looking into adding CERN services in fu-
ture releases, these comprise the interface with LASER,
the CERN central alarm system, the Post Mortem frame-
work and many of the various CERN databases.

With the current class based data subscription model
and in combination with the RADE framework, this could
be done without much effort [7].

REFERENCES
[1] O. Andreassen et. al,” LabVIEW as a new supervi-

sion solution for industrial control systems”
ICALEPCS (2015), Melbourne, Australia, Paper
MOPGF115

[2] Trofimov N et al “Remote Device Access in the new
CERN Accelerator Controls middleware”
ICALEPCS 2001 (San Jose, California) 2001, Paper
WE201.

[3] Zaharieva Z et al “Database Foundation for the Con-
figuration Management of the CERN Accelerator
Controls System” ICALEPCS'11 (Grenoble, France)
October 2011, Paper MAU004.

[4] Bagiollini V et al “CERN PS/SL Middleware Project,
User Requirements Document” CERN Note SL/99-
16(CO) Issue 1 Revision 3 Geneva, Switzerland Au-
gust 1999

[5] A. Dworak et al. “THE NEW CERN CONTROLS
MIDDLEWARE”, CHEP 2012, New York, USA
Conf. Ser. 396 012017.

[6] P. Gayet et al. “UNICOS a framework to build indus-
try like control systems” ICALEPCS 2005, Geneva
Switzerland, WE3A.2-6O.

[7] O. Andreassen et al. “The LabVIEW RADE frame-
work distributed architecture”, ICALEPCS (2011),
Grenoble, France, Paper WEMAU003.

[8] S. Deghaye et al. “A new System to Acquire and
Display the Analog Signals for LHC”, ICALEPCS
2003, Gyeongju, Korea, WP502

[9] LabVIEW Scripting webpage
http://sine.ni.com/nips/cds/view/p/lang/en/nid/20911
0

[10] K. Banker “MONGODB IN ACTION”, p. 375,
ISBN 9781935182870, 2011

[11] W. Mahnke “OPC UNIFIED ARCHITECHTURE”
OPC UA, (2009),
https://library.e.abb.com/public/75d70c47268d78bfc
125762d00481f78/56-61 3M903_ENG72dpi.pdf

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA185

THPHA185
1876

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

