
VISUALISATION OF REAL-TIME FRONT-END SOFTWARE
ARCHITECTURE (FESA) DEVELOPMENTS AT CERN

A. Topaloudis, CERN, Geneva, Switzerland
C. Rachex, Polytech Grenoble, Saint Martin d’Hères, France

Abstract
The Front-End Software Architecture (FESA) framework

is the basis for most real-time software development for ac-
celerator control at CERN. FESA designs are defined in an
XML document which is validated against a schema to en-
force framework constraints, and are used to automatically
generate C++ boilerplate code in which the developer can
then implement specific code. Design files can rapidly grow
in complexity making the overview of the resulting system
almost impossible to understand. One way to overcome this
is to benefit from a graph-based representation of the design,
with XML fragments summarized into logical blocks and
association between the blocks depicted by arrows. As the
intricacy of the graph is analogous to a potential complex
design, it is also essential to provide an interactive Graphi-
cal User Interface (GUI) for parameterising and editing the
graph generation in order to fine-tune a simpler and cleaner
illustration of a FESA design. This paper describes such
a GUI (FESA Graph Editor) and outlines how it benefits
the design and documentation process of the FESA-design-
document.

INTRODUCTION
The control system of the accelerator complex at CERN

can be divided in three physical layers and can therefore
be described as having a 3-tier architecture. The top tier
consists of dedicated computers for running operational and
expert high-level client applications, while the middle tier
consists of servers that implement business and supervision
logic. The lower tier is composed of embedded front-end
computers (FECs) running real-time software, to control and
monitor the accelerator equipment [1].
Software in the lower tier is developed using the FESA

framework in order to standardise, speed-up and simplify
the software development process [2]. FESA is a complete
environment where developers model their software accord-
ing to the framework’s standards, which results in generated
C++ boilerplate code. This generated code includes the
necessary real-time scheduling classes and sophisticated
mechanisms to ensure data consistency in multi-threaded
environments [3]. Thus, not only do they benefit from ready-
made solutions accelerating the development time, but also
from a common structure that facilitates its long-term sup-
port and maintenance.
Figure 1 shows how structures can be divided into three

major segments that developers need to define. The Server
part comprises the software’s Application Programmable
Interface (API), organized in so called Properties accessible
to the control system. Each Property can contain a group of

readable and/or writable value-items. The Real Time part
is organized in C++ classes called Actions and is where the
low-level access to the hardware typically takes place. The
configuration which triggers such Actions (i.e. events the
software must react on) also belongs to this part. Finally, the
Data Store is a set of fields and custom structures creating the
internal data model, which is shared by the aforementioned
parts.

The definition of all these parts is stored in an XML doc-
ument called a FESA-design, which is validated against a
schema to impose the framework’s constraints [2]. While the
XML format is convenient for its validation and code genera-
tion, it becomes cumbersome to edit or visualise, especially
as the complexity of the software grows.
The FESA framework currently complements the docu-

mentation of a FESA-design with a graph generated by a
python script with the help of the graphviz library [4]. Al-
though this proof-of-concept is very inspiring, the structure
and the static nature of the graph often makes the result
unusable.

This paper describes a new graphical representation of the
FESA design as an alternative to the XML text. In addition, it
describes a GUI that facilitates editing to make the resulting
graph cleaner and more user-friendly, addressing the issues
with the existing graphical visualisation.

Figure 1: FESA software structure.

PROBLEMS
The current version of the framework (FESA 3) is inte-

grated in the development environment as an Eclipse [5]
plug-in. It provides two ways of viewing and editing a de-
sign document: a FESA design view, which is a prettified
XML editor, and the eclipse’s text editor to access the source
document directly [1].
In a FESA-design, there exist numerous elements which

can refer to other elements often located far from each other
in the document. Consequently, both ways of viewing in
Eclipse lack the ability to give a good overview of the soft-
ware described, making its maintenance troublesome. This

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA180

User Interfaces and User eXperience (UX)
THPHA180

1853

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 2: Structured graphical fragmentation of a FESA design.

is even more evident in composite software resulting from
complex and lengthy designs since the number of such ele-
ments and their inter-references grows.

GRAPHICAL REPRESENTATION OF A
SOFTWARE DESIGN

One way to obtain the overview of the software design, is
to abstract it in a graph summarizing XML fragments into
logical blocks and depicting the association between them
by arrows as seen in Fig. 2.

Design Fragmentation
Visualising a FESA-design in a graph, benefits from its

structured fragmentation. Figure 2 illustrates such an or-
ganization, grouping the elements from the different parts.
Elements referring to the Real-Time part are placed in the
centre, being at the core of the software. Those referring to
the Server part are then split on either side of the graph.

By placing the Properties which contain writable value-
items (Input Server part) on the left and those containing
read-only items (Output Server part) on the right, gives a
more natural way of reading the graph(left-to-right). Thus,
studying the graph reveals the user inputs which are needed
by the software to run the real-time part and shows what
acquired data is given back to the user.

Overview and Documentation
As seen in Fig. 2, by fragmenting the design and visu-

alising it in a graph, the internal details (i.e. Data Store)
can easily be hidden, while simultaneously emphasizing the
important aspects of the software’s core organization (Real-
Time part) and its public API (Server part). This, results
in a clean, yet descriptive, overview. The documentation of
the real-time software developed with FESA thus becomes
richer and simpler, contributing to its long-termmaintenance
as well as encouraging collaboration among the different
stakeholders.

Error Detection
In a graph-based representation of a FESA-design, de-

velopers can also benefit from quicker error detection. The
association between the logical groups are visible in the
form of arrows, facilitating the identification of missing or
incorrect connections.

FESA GRAPH EDITOR
Even the structured fragmentation of a FESA-design in

a graph, can eventually lead to unmanageable complexity.
This yields the need to make the graph editable, to result
in a cleaner illustration of the design while still benefitting
from its graphical summary.

To overcome this problem, and improve user experience, a
FESAGraph editor was developed to ease the transformation
of a FESA-design document to its graphical representation.

Background
The FESAGraph Editor is a stand-alone application devel-

oped in Java to operate consistently across diverse platforms
and to make direct use of existing Java libraries provided
by the FESA team. These libraries form a model of a given
FESA design document, which is encapsulated in the appli-
cation’s dynamic model called FModel. Therefore, FESA
Graph Editor extends the model’s capabilities to enable the
creation and composition of the software’s graphical abstrac-
tion.
For building the UI the JavaFX toolkit was chosen, as it

currently provides the richest set of graphics and media pack-
ages for Java. Most of the UI is defined in an XML-based
mark-up language called FXML, as it is suitable for easy de-
velopment and maintenance of complex UIs [6]. Due to the
lack of native support for interactive graphs, an open-source
library was used. The Graph Editor was developed by Tesis
DYNAware for creating and editing graph-like diagrams in
JavaFX [7].

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA180

THPHA180
1854

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

Figure 3: Data Store summary in classified tables.

In order to react to user input to the graph, the library im-
plements theModel View Controller (MVC) pattern, making
use of the Eclipse Modeling Framework (EMF) [8]. The
Model of the graph is based on the aforementioned FModel
and dictates the components of the FESA design that will be
visible in the graph. The way these components are depicted
is based on a set of Java classes called skins, that define
the JavaFX nodes which represent them. These nodes are
laid down in a container canvas that, together with the skins,
compose the View. Finally, the Controller notifies the Model
when the user changes the View (edits the graph) and vice
versa (when changes in the Model need to be reflected in the
View) for providing an effortless synchronization between
the two.

User Interface
Exploiting the library’s wide customization support, the

FESA Graph Editor defines its own custom skins as an exten-
sion of the default set, to benefit from a tailored depiction of
a FESA-design. To that end, FESA components of the same
type (e.g. Real-Time Actions), are represented by boxes
which may contain children (i.e. the actual defined real-time
actions) in the form of inner nodes. A toolbar at the bottom
of each box, allows customization of the box, in terms of
order and colour of the inner nodes, as well other functions
specific to the group. To avoid overpopulating the graph, the
boxes become visible only if they contain at least one inner
element. Since the boxes extend the library’s default skins,
they also support a drag-and-drop functionality enabling
their repainting on the canvas to result in a cleaner graph.
The actual FESA components are represented by nodes

that can be connected from either end to depict an association
between them. Taking advantage of the library’s selection
API, the nodes can be re-arranged within their enclosing
box, and shown with a menu listing the available functions
they support. As a result, the information from a FESA-
design can be abstracted without ever being lost, becoming

visible only when the details are needed. As an example,
in the overview of the graph the general API components
are visible (e.g. the list of Acquisition Properties in the
homonym box composing the Server Output part) but the
details of a selected Property (i.e. the list of its value-
fields) only becomes visible when requested in the form of
an editable, pop-up table.
It is evident that the more FESA components belong to

a group, the bigger the box will be. To support such large
graphs resulting from complex designs, the area of the con-
tainer canvas of the application is larger than what is visible.
For navigating the whole area, the library offers convenient
zooming and panning mechanisms. In addition, it offers an
interactive, pop-up mini-map, which helps identify which
area of the graph is currently visible and enables a direct
change of the region of interest.
To give a complete editing user experience, the applica-

tion implements a Command Stack to keep track of the
changes performed on the graph. This permits cancelling or
recovering an action, offering full undo / redo functionality.
When the resulting graph satisfies the user requirements, it
can be extracted in the following ways:

• saved as a PNG image.
• saved as a graph for reload to the application at a future
date.

• copied to the clipboard for quicker sharing.
Although the Real-Time and Server parts of the FESA

software are conveniently illustrated in a graphical format
with boxes and arrows, Data Store is better summarized in
tables. Since the list of fields that it contains can be large and
are only needed internally in the software, its contribution
to the design overview is limited. However, it remains of
high importance when it comes to studying a FESA design
in greater detail and thus, a user-friendly view can be made
visible on demand.

Data Store’s fields are grouped in tables along with their
attributes for better visibility. Such tables are organized in

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA180

User Interfaces and User eXperience (UX)
THPHA180

1855

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

tabs according to the different categories of the fields for
easier classification. Their cell type can differ (e.g. text-
field, check-box, combo-box) according to the value type
they represent. This is achieved by binding the tables with
the FModel, offering a constant synchronization between
the two.
An example of a Data Store illustration can be seen in

Fig. 3 and is very similar to the table grouping details from
a Property (i.e. the list of its value-items).

FESA Integration
A large effort was made to integrate as much of the FESA

framework’s functionalities as possible starting with its
model. A FESA toolbar was therefore added to the applica-
tion, allowing the user to launch three basic operations:

• Validation to validate the loaded FModel against the
framework constrains.

• Synchronization to generate the C++ code based on
the loaded FModel.

• Upgrade to upgrade the framework version in the
loaded FModel.

Integration of the framework into the application is highly
promising for producing a complete visual development
environment to improve the user-experience when creating
and editing the design of FESA software.

CONCLUSION & OUTLOOK
In order to get an overview of software developed with

the FESA framework and ensure its coherent documenta-
tion and for subsequent long-term maintenance, a graphical
abstraction of the design is essential. This paper proposes
a structured, pictorial fragmentation of such a design, with
logical blocks representing its high-level XML fragments
and arrows illustrating their associations.
As the resulting graph may still be complex, the need

for editing it, is crucial. Therefore, a graphical overview

application with in-built editor was developed to allow the
graph customisation, resulting in a cleaner illustration and
thus a more contractive software overview.
The next step being envisaged is a complete visual lay-

out tool, were users will be able to design and edit their
software structure without needing direct access to an XML
document.

ACKNOWLEDGEMENT
The team would like to thank Frederic Hoguin from the

CERN FESA team for his considerable contribution to this
work through a lot of useful advice, as well Bartosz Przemys-
law Bielawski from the CERN BE-RF group for inspiration.

REFERENCES
[1] S. Deghaye and E. Fortescue-Beck, “Introduction to

the BE/CO control system”, https://be-dep-co.web.
cern.ch/sites/be-dep-co.web.cern.ch/files/
site_documents/BECO%20Accelerator%20Control%
20System%202016%20Part%201.pdf

[2] M. Arruat et al., “Front-End Software Architecture”, in Proc.
ICALEPCS’07, Knoxville, TN, USA, Oct. 2007, pp. 310–312.

[3] S. Hoguin and S. Deghaye, “Solving the Synchronization Prob-
lem in Multi-Core Embedded Real-Time Systems”, in Proc.
ICALEPCS’15, Melbourne, Australia, Oct. 2015, pp. 942–946,
doi:10.18429/JACoW-ICALEPCS2015-WEPGF102

[4] Graphviz, http://www.graphviz.org/.

[5] Eclipse, https://eclipse.org/home/index.php

[6] JavaFX, http://www.oracle.com/technetwork/java/
javase/overview/javafx-overview-2158620.html

[7] Graph Editor,
https://github.com/tesis-dynaware/graph-editor

[8] Eclipse Modeling Framework,
http://www.eclipse.org/modeling/emf/.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA180

THPHA180
1856

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

