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Abstract

As a contribution to the European Spallation Source as

part of BrightnESS, the Paul Scherrer Institut is involved

in the streaming of EPICS data and the writing of NeXus

compliant HDF5 files. We combine this development with

the transition of the AMOR instrument at the Paul Scherrer

Institut to EPICS and a streaming based data architecture.

To guide our development before ESS has operational equip-

ment, we use a detailed simulation of the instrument AMOR

at SINQ to test and integrate our data streaming components.

We convert EPICS data sources to Google FlatBuffers as our

message format and distribute them using Apache Kafka.

On the file writing side, we combine the messages from

EPICS data sources as well as from neutron events to write

HDF5 files at rates up to 4.8 GiB/s using Parallel HDF. This

platform will also be used for testing the experiment control

software on top of EPICS.

INTRODUCTION

The European Spallation Source (ESS) [1] will offer

higher brightness and higher data rates than previous neutron

sources. This demands a capable infrastructure to handle

the produced data. As part of the BrightnESS [2] project,

the Paul Scherrer Institut (PSI) [3] contributes to the devel-

opment of the data streaming layer and to the writing of

NeXus-compliant [4] HDF [5] files.

Instruments at ESS use among others the Experimental

Physics and Industrial Control System (EPICS) [6] for con-

trol, to expose status information and to publish measured

values. We incorporate EPICS data sources into the data

streaming layer by converting EPICS data to a common seri-

alization format and streaming them to a unified messaging

layer.

Experimental data is also made available to the users in

the form of NeXus-compliant HDF files. We present the

ongoing development of the HDF File Writer which reads

the selected data streams from the common messaging layer

and creates the HDF file as configured by the user. The

architecture is modular and extensible. General purpose

writer modules are available which can handle the common

types of data streams, while specialized writer modules can

be easily added. This allows handling of new types of data
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streams or exploiting possible invariants of a data stream for

more aggressive optimizations.

During development, we also use a simulation of the

AMOR [7–9] instrument at PSI which contains a range of

virtual devices modelled after the real instrument, and in

addition some extensions specific to ESS.

In this conference note, we present the current status of

the streaming of EPICS data to the messaging layer and the

writing of HDF files.

STREAMING EPICS DATA SOURCES

Data Sources

EPICS is used at many scientific facilities around the

world as a control system, including at particle accelerators

and telescopes. At ESS, data coming from EPICS sources

typically includes the sample environment, choppers and

motion control.

Motion control and choppers contribute to the overall data

acquisition with a rather low data rate, even though at ESS,

the chopper top-dead-centre (TDC) events will be recorded

and made available via the EPICS interface. Even though

TDC events contribute a slightly higher rate, the events will

be gathered in batches already at the EPICS interface so that

the EPICS update rate is much lower than the actual TDC

event rate. Furthermore, the EPICS update rate can be kept

independent of the TDC event rate.

The sample environment provides information such as

temperature, positioning and electromagnetic fields. While

data rates from temperature sensors are very low, fast chang-

ing electromagnetic fields can produce a moderate data rate.

Similar to the chopper TDC events, measured field values

can be batched at the EPICS interface.

Messaging Layer

All generated data at ESS is represented uniformly as

messages which get pushed into a queue of the intermediate

messaging layer. The usage of a separate messaging layer

improves decoupling between the individual components

of the system by enforcing well defined common interfaces.

It simplifies the overall design because components do not

need separate interfaces to each other (n:m), but only to

the common messaging layer (n:1). This allows for easier

addition and replacement of individual components of the

ESS data streaming architecture in the future. This also

facilitates the scaling of the data distribution layer.
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Apache Kafka [10] is used as the message broker for

data streaming at ESS. It offers a configurable number of

persistent commit logs, which represent the message queues.

Producers can publish messages to their chosen queue, while

consumers can monitor the queue of interest. Kafka offers

tuneable scalability and redundancy.

An individual message queue (called “topic”) can be split

among several commit logs (called “partitions”) which can

run on the same or different physical machines. This allows

distributing the load on a topic over multiple brokers at the

cost of losing the relative ordering between messages in

different partitions.

Redundancy is provided by the possibility to replicate each

partition a configurable number of times. Given a replication

factor n, a producer can demand 0..n acknowledgements

depending on its safety requirements.

One distinguishing feature of Kafka compared to other

messaging solutions is the persistence of the commit log.

The messages are persisted to the file system for a config-

urable maximum time or until a maximum commit log size

has been reached. This still allows for very high throughput

because the file system access is mostly sequential. The

persisted commit log allows consumers to optionally start

reading from a point in the past, which allows executing a

task again in case a component failed, or in the case of the

HDF File Writer, to (re-)generate the HDF file for a previous

experiment.

The official Kafka client is written in Java, but a set of

third party open source libraries exist as well. One of those is

librdkafka [11] which is a widely used implementation of

the Kafka protocol in C/C++. It allows very high throughput,

both in terms of number of messages and number of bytes,

facilitated by a memory-efficient, zero-copy design.

Serialization Format

Interoperability demands that the type of each message

on the messaging layer can be unambiguously identified by

every component. This requires the usage of a common

message format at least at the top level of all messages. The

common message format should be light-weight, memory

efficient, flexible, open and must allow for lossless repre-

sentation of numeric data. It should not demand expensive

conversions.

Based on these criteria, we use FlatBuffers [12] for the

data streaming layer because it offers very low processing

overhead, has good support for a variety of languages, is

under active development and proven in existing projects. It

is a statically typed format and all definitions of the common

FlatBuffer message types (“schemas”) are kept in a common

repository [13].

FORWARD EPICS TO KAFKA

To stream EPICS data sources to the messaging layer, we

develop forward-epics-to-kafka [14]. The application

monitors a given list of EPICS variables for updates, converts

the data received from EPICS to a FlatBuffer according to a

configured conversion module, and publishes the FlatBuffer

as a message on the Kafka messaging layer.

The monitoring of the EPICS variables is implemented

on top of the EPICS v4 C++ API which allows us to monitor

EPICS process variables via the more recent EPICS PV-

access protocol. Internally, the EPICS v4 library also uses

the older EPICS Base stack which allows us to also monitor

EPICS variables via the older Channel Access Protocol using

the same API.

The user configures the list of EPICS variables to be mon-

itored via a configuration file (JSON) at program start, or

via command messages at runtime. Command messages can

also be used to stop the monitoring of EPICS variables as

well as to change other options.

Status and log messages are published by the EPICS For-

warder in configurable intervals to a given Kafka topic. This

allows consumers of the status topic, for example the Exper-

iment Control Program, to present this information to the

user, or to allow monitoring software to detect the proper

operation of the application.

The EPICS Forwarder is designed with multi-core hard-

ware in mind and can utilize a configurable number of cores

on the machine.

Updates are taken from EPICS and enqueued in the in-

ternal conversion queue together with the necessary infor-

mation on how the EPICS data should be converted to a

FlatBuffer. A pool of worker threads processes these items

in the queue and performs the conversion from the EPICS

PVStucture object to a FlatBuffer according to the config-

ured conversion module. After the conversion, the worker

thread enqueues the FlatBuffer for transmission to the se-

lected Kafka topic.

EPICS Forwarder Performance

Table 1: Values obtained on two machines connected by

10 Gb/s Ethernet.

Throughput 260 MB/s

Frequency 60 kHz

We benchmark the EPICS Forwarder on two machines

connected with 10 Gb/s Ethernet and a single Kafka broker

results in the values of Table 1. The obtained throughput

coincides with the maximum write speed of the Kafka broker

on that setup. We can forward the EPICS updates up to the

maximum frequency to which the EPICS library itself can

deliver them. The EPICS Forwarder is not a limiting factor

in this setup. Further benchmarking is required on different

hardware.

HDF FILE WRITER

Data streams from the Kafka messaging layer must be

written to NeXus [4] compliant HDF [5] files. To that end,

we develop kafka-to-nexus [15]. While the HDF library

is very performant, the throughput on a single CPU core
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will at some point be limited. There are different ways to

improve the throughput further, of which we will mention

“Direct Chunk Write” and “Parallel HDF”.

Direct Chunk Write

Datasets in a HDF file can be chunked, which means that

the data does not occupy a continuous range of the file, but in-

stead is divided into a regular n-dimensional hypergrid. Each

hypercube in this space is called a chunk. Chunked datasets

are also the only way to work with extensible datasets in a

HDF file.

Direct Chunk Write [16, 17] is an optimized way to write

data to a chunk. This is based on the idea that a chunk

does occupy a continuous range in the HDF file, and is

therefore much simpler to access directly. Specifically, the

HDF library does not have to find the set of chunks and

their locations in the HDF file that an arbitrary read or write

request would touch. Also, Direct Chunk Write allows to

bypass optional format conversions and data compression

which is useful if such conversions are already applied to

the data before a write request.

There is though one major drawback of Direct Chunk

Write, which is that it has to start on an edge of the chunk hy-

pergrid. This is no strong constraint for applications where

the size of each written message is fixed and known in ad-

vance, but it makes arbitrary write requests harder to imple-

ment especially if one strives for a minimal- or zero-copy

architecture.

Parallel HDF

The parallel version of the HDF library is built on top of

the Message Passing Interface (MPI) [18]. This allows an

application to utilize multiple CPU cores while still being

able to use the full HDF API and especially to issue arbitrary

writes and reads, in contrast to Direct Chunk Write. Parallel

HDF is therefore a very appealing option for the HDF File

Writer.

We will show that the HDF File Writer can provide excel-

lent throughput by using Parallel HDF, while still maintain-

ing the full flexibility of the single-threaded version.

HDF File Writer Performance

The performance of the HDF File Writer is essentially

limited by the available I/O. There are two main aspects

to consider, which are the input from the Kafka messaging

layer and the output to the file system where the HDF file

should be written to.

As discussed previously for the EPICS Forwarder, the

Kafka messaging layer allows us to scale the input bandwidth

by routing data streams through different physical brokers.

On the other side, to be able to write HDF files at the

expected high data rates, the file system layer has to be

backed by an appropriately fast I/O layer. For our tests, we

use GPFS (now IBM Spectrum Scale [19]) connected via

Infiniband FDR as shown in Table 2.

We first look at the HDF write performance separately

where we simulate a fast Kafka connection by pregenerating

Table 2: Specifications of the compute node that is used

to benchmark the file output performance of the HDF File

Writer.

Property Value

CPU Intel Xeon E5-2690V4

Cores 14

Threads 28

Clock 2.60 GHz

RAM 256 GB

Cache 35 MB

File system GPFS via 4x Infiniband FDR

0 2 4 6 8 10
Total Number of Workers

0

1

2

3

4

5

W
rit

e 
Sp

ee
d 

(G
B

/s
)

HDF Write Throughput vs. Worker Processes

1 stream
2 streams

Figure 1: Throughput vs. Number of Worker Processes. The

points for the 2-stream case are slightly displaced for read-

ability.

the incoming Kafka messages in RAM and using these to

feed the writer. Otherwise, the messages follow the normal

code path. They are enqueued for the set of MPI worker

processes which handle the data stream, and written to file

by one of the worker processes.

Figure 1 shows that we can reach the maximum write per-

formance of about 4.8 GiB/s on our test system with about

6 worker processes. The throughput was measured for the

cases of 1 and 2 data streams being written to HDF. We

see that the performance is comparable for these two cases.

Further testing with an increased number of streams is nec-

essary.

For chunked datasets, the size of the chunks is an essential

tuning parameter. Too small chunk sizes require an unpro-

portionally large overhead, while too large chunk sizes can

thrash the chunk cache and cause excessive paging especially

in applications where random reads are common.

We investigate how variations of the chunk size affect

the overall throughput while we keep the number of worker

processes w fixed at w = 8. The result is shown in Fig. 2 and

demonstrates that the optimal throughput is achieved over a

fairly wide range of chunk sizes. Still, the chunk size must

not be too small. The throughput is shown for two different

sizes of the individual messages and we see that the message

size has a rather small effect on the overall throughput.
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Figure 2: Throughput vs. Chunk Size. An almost optimal

throughput can be achieved over a quite large range of chunk

sizes.
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Figure 3: Throughput vs. Message Size. The connecting

lines only serve to guide the eye.

Finally, in Fig. 3 we investigate how the throughput de-

pends on the size of the individual messages being written.

The first two sets of points write the messages directly to

HDF. We observe how the throughput decreases for small

messages. There, it pays off to make an additional copy and

to buffer small messages so that we can write them in larger

batches. We note though that we need a larger number of

worker processes in the case of buffered writes to reach the

maximum throughput. This is summarized in Table 3.

Another important aspect of the scalability of the system

is the distribution of CPU load of the individual threads.

Ideally, we would like the load to be distributed equally

among the threads. We especially do not want a single thread,

or a small group of threads, to consume a large fraction of

CPU resources because these threads would likely cause a

bottleneck first.

To investigate this behaviour in the HDF File Writer, we

record the usage of each CPU core in intervals of 1 s. We

then histogram all those usage values over the runtime of the

program. If one or more threads are limited by their CPU

usage, this would show in the histogram as a spike at 1.0.
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Worker Processes: 1
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Figure 4: Histogrammed CPU usage over the runtime of

the program and all CPU cores. We see how the increase in

the number of workers reduces the load on individual cores.

Most importantly, we demonstrate that no single thread is

a bottleneck for the performance and that all threads put a

comparable load on the CPU.

In Fig. 4 we show how the histogrammed CPU usage

changes with the number of worker processes. We can see

that given enough processes, the performance is indeed not

limited by a single thread which gives further confidence in

the scalability of the application.

SINQ AMOR SIMULATION

To guide our development before ESS receives opera-

tional equipment we use a simulation [20] of the instrument
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Table 3: The effect of buffered I/O and number of worker

threads on the total average CPU usage.

Buffered Workers Avg CPU (%) Write (GiB/s)

no 4 8.6 4.86

no 8 9.3 4.82

yes 4 11.0 4.39

yes 8 13.1 4.74

AMOR [7–9] located at PSI. The simulation contains a neu-

tron event generator which translates a histogram measured

at AMOR into artificial neutron events, a simulation of a

Dornier chopper, an EL734 [21] motor controller, a Dimetix

laser distance sensor and several magnets.

Simulated devices which deliver a low data rate are im-

plemented in Python based on the Twisted library, while

the neutron event generator is written in C++ to be able to

simulate high throughput.

The simulation of the Dornier chopper has in addition an

EPICS interface which also simulates the TDC events which

are not available at AMOR.

SOURCE CODE

All software is developed as open source and available on

Github [22].

CONCLUSIONS AND OUTLOOK

We present prototypes of the software which is under de-

velopment for the streaming of data and writing of HDF files

at ESS. The conversion and streaming of EPICS variables is

handled by the EPICS Forwarder [14] which converts EPICS

data to FlatBuffers and sends them to the Kafka messaging

layer in a highly configurable and extensible way.

The HDF File Writer [15] reads data streams from the

Kafka messaging layer and writes NeXus compliant HDF

files using Parallel HDF. We demonstrate a throughput of

4.8 GB/s which is close to the bandwidth of the file system

on our test machine.

Further development of the HDF File Writer includes

optional Direct Chunk Write in the case of buffered I/O to

increase the efficiency even further and more features to

improve usability.
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