
PACKAGING AND HIGH AVAILABILITY FOR DISTRIBUTED CONTROL
SYSTEMS∗

Mauricio Araya†, Leonardo Pizarro and Horst von Brand
Universidad Técnica Federico Santa María, Valparaíso, Chile

Abstract
The ALMA Common Software (ACS) is a distributed

framework used for control of astronomical observatories,
which is built and deployed using roughly the same tools
available at its design stage. Due to a shallow and rigid
dependency management, the strong modularity principle of
the framework cannot be exploited for packaging, installation
and deployment. Moreover, life-cycle control of its com-
ponents does not comply with standardized system-based
mechanisms. These problems are shared by other instrument-
based distributed systems. The new high-availability require-
ments of modern projects, such as the Cherenkov Telescope
Array, tend to be implemented as new software features due
to these problems, rather than using off-the-shelf and well-
tested platform-based technologies. We present a general
solution for high availability strongly-based on system ser-
vices and proper packaging. We use RPM Packaging, oVirt
and Docker as the infrastructure managers, Pacemaker as the
software resource orchestrator and life-cycle process control
through Systemd. A prototype for ACS was developed to
handle its services and containers.

INTRODUCTION
The ALMA Common Software (ACS) was designed on

the early 2000s, with the objective of providing a basic con-
trol and communication codebase for the ALMA observa-
tory [1]. The technologies used for its construction were
probably the best technical choices back then, but not all
of them have aged well. For instance, ACS relies on the
CORBA standard, which regulates almost every aspect of a
distributed system using RPC. This was the main research
topic in distributed systems at the time, but currently is in its
way to obsolescence and is known to have a low performance
among similar tools [2]. On the other hand, ACS is still a
very powerful and tailored solution for complex array con-
trol, with a solid architecture and modular development that
allows reusing the code for new projects like the Cherenkov
Telescope Array [3]. This imposes new challenges for the
framework not only at the software development level (e.g.,
gradually replacing CORBA interfaces), but also at the con-
struction and deployment levels. In this paper we address
this last problem to increase ACS robustness, flexibility and
availability using generic solutions from modern, large and
distributed software systems.

∗ Work supported by Centro CientÍfico Tecnológico de ValparaÍso (CONI-
CYT FB-0821) and Advanced Center for Electrical and Electronic Engi-
neering (CONICYT FB-0008)
† mauricio.araya@usm.cl

ACS PACKAGING AND DEPLOYMENT
The ACS framework is currently built by using its own

construction system based on make [4]. It consists in
a master Makefile, which enters each software module
and tool searching for a standard directory structure that
have other Makefiles, which needs a common base file
called acsMakefile to operate. This recursive Makefile
paradigm is widely considered a bad practice, because de-
pendencies are hard to maintain and the construction process
is difficult to track and resume. Also, it requires to previ-
ously compile other tools known as External Products, with
specific versions and patches different from the ones offered
by the operating system distribution. Moreover, the construc-
tion paths and configurations are setup through environment
variables handled by the bash_profile.acs file that must
be sourced. All this software is finally packaged as a very
large monolithic tarball meant to be uncompressed in a very
specific OS version.
Besides the direct difficulties at the construction stage,

the software distribution produce a steep learning curve
for its installation and environment setup, a non-modular
deployment of the software packages, a replace-all update
method, and no separation between runtime, configuration,
development, example and testing packages. A few attempts
to update the ACS construction and deployment system have
been tested in the past[5]. Among the tools used, two of
them stand out: RPM [6] and Docker [7].

RPM Packaging of ACS
RPM is the package manager of multiple operative sys-

tems and handles the building, installing, updating and de-
pendency restrictions of the software. It has existed since
1997, and it’s core file contains the step-by-step instructions
to build the software once, and deploy the binaries and other
products ready to use, many times. It also allows to distribute
updates with controlled dependencies and versions. One of
the resulting products, the Source RPM, allows migration
among different architectures almost transparently.
For ACS, we address the packaging problem in a prag-

matic fashion, assuming a simple tree-like dependency
model, where at the leafs were the components that were
dependency-free but needed by the parent node. The ACS-
base is divided in three groups: External Tools, Tools and
Kit, with External Tools as the lowest group in the tree. With
the off-the-shelf notion, each software was searched for in
the repositories of Fedora (21 to 26), CentOS and the special
repositories SCL, SIG and OpenSUSE, searching for the
nearest match regarding the version shipped with ACS.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA045

IT Infrastructure for Control Systems
THPHA045

1465

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



To group these packages in one place and make them
available, an ACS package repository was created at
http://repo.csrg.cl. Instructions for it usage are avail-
able at the project’s main page 1. Source RPMs can also be
found if the user wants to port them to another architecture.
Also, there are directories grouping the different versions of
ACS and the software those versions depend on.

Then, three large RPM packages were built:

• ExtProds: Grouping all RPMs found for replacement
and were all the remaining Python software that hadn’t
an RPM would be installed through Pip. Also the man-
agement of each environment variable of the software
grouped in this RPM, is done by using files in the
profile.d directory, partially replacing the use of
the bash_profile.acs file.

• ExtJars: Jar libraries not found in any RPM.

• ACE+TAO-ACS: A special RPM was created for
ACE+TAO, a software that implements the CORBA
standard for C++, because ACS special patches were
applied.

These RPMs group all of the software needed to compile
ACS source code. The remaining step was to build ACS
core from within its own RPM, however this is still not
completely reliable, due to pending transformations of the
acsMakefile into a standard Makefile. Regardless of
that, the products of a manual compilation of ACS where
packaged inside an RPM. This elements where ACSSW
and acsdata. The software dependencies or script needed
by ACSSW and acsdata, and the respective environment
variables, where packaged the same way as we did with
ExtProds.

The main improvement is the reduction in time and com-
plexity involving the installation of ACS, avoiding the very
time consuming compilation or changing the local OS ver-
sion to support it. This allows deploying ACS in matter
of minutes, handling any update cleanly. Lastly, any ar-
chitectural differences among hardware — a situation not
uncommon to astronomy projects — could save migration
time and effort, with the existence of Source RPMs.

ACS Dockerfile
The relatively recently released Docker system (2013) fo-

cuses on running isolated processes without the overhead
incurred by a complete virtual machine. It uses cgroups,
namespace and SELinux as its basic components. The Dock-
erfile is the core building file that defines a container, allow-
ing the resulting container to be shared using the DockerHub
platform.

Therefore, using the manual compilation of ACS, a com-
plementary solution was built using Docker containers,
which is currently published at the Docker Hub2, which

1 https://csrg-utfsm.github.io/
2 https://hub.docker.com/r/leoxdxp/acs/

allows pull ACS into a docker platform. This is only avail-
able for the ACS 2016.10 version, but an unstable version of
ACS 2017.02 can be found at the CSRG’s Git Repository3.

SYSTEM-BASED HIGH-AVAILABILITY
FOR ACS

In runtime, ACS is a collection of services for commu-
nication (alarm, error, notification channels, etc) and code
execution units called components running in different pro-
gramming language containers4. A basic interaction descrip-
tion can be observed on Figure 1, where in case of a failure
of any of the components, manual intervention should be
needed, involving sometimes the disruption of a ongoing
observation. Also, failure or malfunction of hardware or
operative system processes would cause interruptions in the
data flow.

The lack of a fault-tolerance frameworkwas one of the first
weaknesses of the ACSmiddleware that the CTA consortium
has detected. The high-availability support for keeping track
and control of the components life-cycle, is being addressed
by CTA’s Observation Execution System (OES) through
Supervision Trees (ST). The ST is an idea that can be
found in Erlang [8] and consists in the creation of a super-
visor process per each running process, known as worker.
This model form a tree, starting at the top from the first su-
pervisor process, linked to its worker. Once new workers are
created, new supervisor also start, with a tree-graph linking
workers to workers, supervisors to workers and supervisors
to supervisors. This allows a cascade control of any mal-
function. However, it also requires the worker to be "aware"
of the existence of the supervisor, adding complexity to the
code. The main objective of ST is to handle malfunctioning
processes, stopping and/or replacing them, without affecting
the rest of the system, in the specific way each component
has to be managed.
Before CTA, the high availability (HA) features of dis-

tributed systems, such as fault tolerance and life-cycle man-
agement, have been historically approached in ACS as soft-
ware capabilities. This was the only option at the design stage
of the framework, because these features were not widely
available as system capabilities back then. Nowadays, these
features are increasingly common requirements on all sorts
of software systems, which now are commonly distributed
and diverse. Therefore, solutions for these requirements can
be found now as commodity system’s capabilities.

There are several off-the-shelf tools to manage HA, with
a common pattern of being closer to the Operating Sys-
tem (OS) than the software itself. Between them we found
Pacemaker (PCS) [9], virtual machines (VM) and Linux
container Orchestrators like the oVirt Manager, Rancher
and Kubernetes. As they orchestrate the resources for each
VM or Linux container, they need to perform monitoring
over the VM/Containers, the underlying hosts and their re-

3 https://github.com/csrg-utfsm/acs-docker
4 These are ACS containers, please do not confuse them with Docker
containers

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA045

THPHA045
1466

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

IT Infrastructure for Control Systems



Figure 1: ACS currently, without HA.

sources/availability. Containers are preferred over VMs due
to the overhead that VMs cost as they use virtualized hard-
ware. Linux container orchestrators can also arrange a spe-
cific start/stop order between different containers, depending
on the user configuration.

A HA Proof of Concept for ACS Containers
The fault-tolerance feature under implementation (ST)

will work at the components level, not considering the con-
tainer’s life-cycle management. If we understand the con-
tainer as a process, this challenge is not uncommon, and it
can be addressed by tools such as Pacemaker, where each
element taking part in a system, such as the network, disks,
configurations and processes are handled as a resource. The
start/stop execution order can be managed using the Open
Cluster Framework[10], to configure those and other instruc-
tions (polling/monitoring frequency), and/or using the sys-
tem daemons. The later is a common extra step, because it
allows more detailed monitoring and handling over start/stop
sequences.
Using Pacemaker, or at least parts of the HA software

such as Heartbeat, enables the use of a widely used tool for a
problem that spans along multiple areas, allowing the devel-
opment of OES to be solely focused on features rather than
concerning with corner-cases and/or failure management.
A mixed solution, using Rancher to control infrastructure
level HA, and Pacemaker to monitor/poll the software that
ACS components run could set the base to use ACS without
mayor changes in a HA environment, and include new HA
tools in the future as shown in Figure 2.

Towards a better understanding of the implications of this
mixed solution, we compare the current interactions inside
ACS’s Services, Containers and Components with our pro-

posal. One of the key problems for HA is the randomness of
ports used byACS components when they communicate with
each other. The ports can be fixed to defined segments or
narrowed even to one port, by setting configurations on ACS
Containers and/or ACS’s Configuration Database (CDB).
The disadvantage of this would be the necessary coordina-
tion to define in each of the dozens of ACS components,
which ACS component should use which port. The actual
solution for this has been disabling any firewall where ACS
is used. Even though, security does not usually hold a high
importance in scientific-project context, the use of basic
firewalls is a basic good standard of systems administration.
As the operating system perform constant monitoring

and polling of all the processes, orchestrating and limiting
resources through SysV or Systemd is a commodity, with
the only restriction of doing so locally. Therefore, the HA
for a distributed set of servers needs to be handled then
by a resource manager. In order to provide a first level
of redundancy, Rancher was chosen as the infrastructure
orchestrator, considering the use of Docker Containers for
non-data sensitive ACS elements. For data sensitive ACS
elements, as the relational database CDB, the use of virtual
machines is recommended, and therefore oVirt Manager was
selected.
As an example, the rancher orchestrator can be hosted

in a VM in order to provide HA for the Docker container
orchestrator through oVirt, simplifying the HA of Rancher.
This is done because for a true HA, every component of
the solution needs to be highly available. In general, each
physical server can be an oVirt and a Docker host at the
same time as shown in Figure 3.
The second level of HA, this is, the process-level dis-

tributed management can be done by using Pacemaker. The

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA045

IT Infrastructure for Control Systems
THPHA045

1467

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 2: ACS with HA

Figure 3: Proof of Concept model for ACS with HA.

configuration of ACS services and ACS Containers, the
startup, shutdown and restart sequence, the monitoring pe-
riod between heartbeats and other details can be done via
Pacemakers web interface, which also shows the status of
the resources, or via the command line. This level is rein-
forced with each ACS Service and ACS Container having a
Systemd or SysV daemon configuration file. For this proof
of concept, two Systemd daemons were created, and they
are available within the RPMs. As seen on Figure 2, the
coordination among orchestrators and hosts is done over
TCP, sometimes using JSON for data serialization, thus in-
volving little load on the network. On the other hand, ACS’s

communication is done over RPC, with the extra overhead
that this implies. Therefore, any HA solution from inside
ACS will also have to consider RPC’s overhead.

Even if the proposed solution is used only for ACS Ser-
vices and ACS Containers, it would provide a huge improve-
ment in error management and allow to apply updates with-
out jeopardizing the overall system.

CONCLUSION
Observatories, such as ALMA and CTA, need a building

system that can provide continuous software updates with-
out disrupting the production environment and be as cheap
in time and human resource as possible. The use of tools
such as RPM and/or docker containers to automate deploy-
ment, must be considered from the start of the projects in
order to reduce the number of man-hours dedicated to this
task, specially regarding software testings, were the differ-
ence between the testing environment and the production
environment, have direct consequences and can delay imple-
mentation of new features. In relation to the above, a long
term and robust building system arises as the cornerstone for
projects that will continuously function for several decades
with possible expansions in its resources and systems.

As solutions for High Availability within distributed sys-
tems is not only a topic related solely to observatories, the
proposed idea can be applied without mayor changes to any
other science project. This is specially the case for those that
due to the difference between the time of their conception and
their implementation, or by other reasons, didn’t consider
HA or built it in a higher level of the software stack. Also,
distributed systems have had a paradigm integration with

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA045

THPHA045
1468

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

IT Infrastructure for Control Systems



HA, providing a new and interesting mix, where software
development and system administration areas have merged,
changing the perspective on HA and distributed systems.

ACKNOWLEDGMENT
This research was possible due to CONICYT-Chile fund-

ings, specifically through the Basal Project FB-0821 and
Basal Project FB-0008.

REFERENCES
[1] G. Chiozzi et al., “The ALMA common software: a

developer-friendly CORBA-based framework,” in Advanced
Software, Control, and Communication Systems for Astron-
omy, H. Lewis and G. Raffi, Eds., vol. 5496, Sep. 2004,
pp. 205–218.

[2] A. Dworak, P. Charrue, F. Ehm, W. Sliwinski, and M.
Sobczak, “Middleware Trends And Market Leaders 2011,”
Conf. Proc., vol. C111010, no. CERN-ATS-2011-196, 4p,
Oct. 2011.

[3] I. Oya et al., “The software architecture to control the
cherenkov telescope array,” Proc.SPIE, vol. 9913, p. 15,
2016.

[4] S. I. Feldman, “Make – a programm formaintaining computer
programs,” Software: Practice & Experience, vol. 9, no. 4,
pp. 255–265, Apr. 1979. doi: 10.1002/spe.4380090402.

[5] M. Mora et al., “Integrating a university team in the ALMA
software development process: a successful model for dis-
tributed collaborations,” in Software and Cyberinfrastruc-
ture for Astronomy, vol. 7740, Jul. 2010, p. 77403I. doi:
10.1117/12.857832.

[6] E. Foster-Johnson, Red Hat RPMGuide. Red Hat Press, 2002.
[7] D. Merkel, “Docker: Lightweight linux containers for con-

sistent development and deployment,” Linux J., vol. 2014,
no. 239, Mar. 2014, issn: 1075-3583. http://dl.acm.
org/citation.cfm?id=2600239.2600241

[8] M. Logan, E.Merrit, and Carlsson,Erlang andOTP in Action.
Manning Publications, 2010.

[9] L. Perkov, N. Pavković, and J. Petrović, “High-availability
using open source software,” in 2011 Proceedings of the 34th
International Convention MIPRO, May 2011, pp. 167–170.

[10] A. Santos, F. Almeida, and V. Blanco, “The OpenCF: An
open source computational framework based on web ser-
vices technologies,” in International Conference on Parallel
Processing and Applied Mathematics, ser. Lecture Notes in
Computer Science, vol. 4967, Springer, 2007, pp. 788–797.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA045

IT Infrastructure for Control Systems
THPHA045

1469

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


