
LIGHTFLOW - A LIGHTWEIGHT, DISTRIBUTED WORKFLOW SYSTEM
A. Moll, R. Clarken, P. Martin, S. Mudie, Australian Synchrotron - ANSTO, Melbourne, Australia

Abstract
The Australian Synchrotron, located in Clayton, Mel-

bourne, is one of Australia’s most important pieces of re-

search infrastructure. After more than 10 years of operation,

the beamlines at the Australian Synchrotron are well estab-

lished and the demand for automation of research tasks is

growing. Such tasks routinely involve the reduction of TB-

scale data, online (realtime) analysis of the recorded data to

guide experiments, and fully automated data management

workflows.

In order to meet these demands, a generic, distributed

workflow system was developed. It is based on well-

established Python libraries and tools. The individual tasks

of a workflow are arranged in a directed acyclic graph and

one or more directed acyclic graphs form a workflow. Work-

ers consume the tasks, allowing the processing of a workflow

to scale horizontally. Data can flow between tasks and a va-

riety of specialised tasks is available.

Lightflow has been released as open source on the Aus-

tralian Synchrotron GitHub page [1].

INTRODUCTION
With the advent of sample changing robots and automated

analysis tools, the beamlines at the Australian Synchrotron

require the automation of data processing and analysis tasks.

Looking into the individual automated workflows for the

beamlines it is found that the implementation of the work-

flows share a very similar set of requirements. This allows

the deployment of a common workflow system across all

beamlines. An example for an automated workflow is shown

in Fig. 1. A detector captures the data produced in an exper-

iment and writes the data to files on a high speed storage.

Upon the arrival of new files a pipeline is started which

reads, processes, and analyses the new files. Often the result

of processing the new files has to be merged with previous

runs of the pipeline, recorded in a central storage. At the

end, the result of the pipeline is displayed to the user.

A system that supports such a workflow has to offer the

capability to start one or more pipelines based on external

events, such as the appearance of new files or the change

of EPICS Process Variables; model complex pipelines and

allow their execution on a distributed computing system;

and offer a central storage for keeping intermediate results.

Lightflow, the workflow system presented here, fulfills those

requirements.

ARCHITECTURE
Lightflowmodels a workflow as a set of individual tasks ar-

ranged as a directed acyclic graph (DAG). This specification

encodes the direction that data flows as well as dependen-

cies between tasks. Each workflow consists of one or more

Figure 1: Near realtime pipeline at a beamline. Data cap-

tured by the detector is processed in near realtime in order

to provide users with quick feedback.

DAGs. While the arrangement of tasks within a DAG cannot

be changed at runtime, other DAGs can be triggered from

within a task, therefore enabling a workflow to be adapted

to varying inputs or changing conditions during runtime.

Lightflow employs a worker-based queuing system, in

which workers consume individual tasks. This allows the

processing of workflows to be distributed. Such a scheme has

multiple benefits: It is easy to scale horizontally; tasks that

can be executed in parallel are executed on available workers

at the same time; tasks that require specialised hardware or

software environments can be routed to dedicated workers;

and it simplifies the integration into existing container based

cloud environments.

In order to avoid single points of failure, such as a central

daemon often found in other workflow tools, the queuing

system is also used to manage and monitor workflows and

DAGs. When a new workflow is started, it is placed in a

special queue and is eventually consumed by a worker. A

workflow is executed by sending its DAGs to their respective

queues. Each DAG will then start and monitor the execution

of its tasks. The diagram in Fig. 2 depicts the worker-based

architecture of Lightflow.

IMPLEMENTATION
Lightflow is written in Python 3 and supports Python 3.5

and higher. It uses the Celery [2] library for queuing tasks

and the NetworkX [3] module for managing the directed

acyclic graphs. As redis [4] is a common database found

at many beamlines at the Australian Synchrotron, it is the

default backend for Celery in Lightflow. However, any other

Celery backend can be used as well. In addition to redis,

Lightflow uses MongoDB [5] in order to store data that is

persistent during a workflow run. Examples include the

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA043

Data Management and Processing
THPHA043

1457

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 2: Worker based architecture of Lightflow. Workers are used to manage the three main components of a workflow:

workflows, DAGs and tasks. In a typical setup for a computing cluster there are multiple queues for tasks.

aggregation of values, calculation of running averages, or

the storage of flags.

Tasks can receive data from upstream tasks and send data

to downstream tasks. Any data that can be serialised can

be shared between tasks. Typical examples for data flowing

from task to task are file paths, pandas [6] DataFrames or

numpy [7] arrays. The exchange of data across a distributed

system is accomplished by using cloudpickle [8] in order

to serialise and deserialise the data. Lightflow provides a

fully featured command line interface for starting, stopping

and monitoring workflows and workers. The command line

interface is based on the click [9] Python module. An API is

also available for easy integration of Lightflow with existing

tools and software.

In order to keep Lightflow lightweight, the core library fo-

cuses on the essential functionality of a distributed workflow

system and only implements two tasks, a generic Python

task and a bash task for calling arbitrary bash commands.

Specialised tasks and functionality is implemented in ex-

tensions. Currently there are three extensions to Lightflow

available: The filesystem extension offers specialised tasks

for watching directories for file changes and tasks covering

basic file operations [10]; the EPICS [11] extension offers

tasks that hook into EPICS [12], a control system used at the

Australian Synchrotron for operating the hardware devices

of the accelerator and the beamlines; and the REST exten-

sion provides a RESTful interface for starting, stopping and

monitoring workflows via HTTP calls [13].

WORKFLOW DEFINITION
Lightflow uses Python and an efficient API to define a

workflow. Users don’t have to learn a domain specific lan-

guage and can use their preferred Python libraries. The

workflow definition can be tested locally and scales without

changes to run on a computing cluster. Lightflow ships with

15 examples, highlighting all features of the workflow sys-

tem. The following source code shows a simple workflow

definition consisting of three tasks, incrementing a number:

from lightflow.models import Dag
from lightflow.tasks import PythonTask

the callback function for all tasks
def inc_number(data, store, signal, context):

print(’Task {task_name} being run in ’
’DAG {dag_name} for workflow ’
’{workflow_name} ({workflow_id}) ’
’on {worker_hostname}’.
format(**context.to_dict()))

if ’value’ not in data:
data[’value’] = 0

data[’value’] = data[’value’] + 1
print(’This is task

#{}’.format(data[’value’]))

create the main DAG
d = Dag(’main_dag’)

create the 3 tasks that increment a number
task_1 = PythonTask(name=’task_1’,

callback=inc_number)

task_2 = PythonTask(name=’task_2’,
callback=inc_number)

task_3 = PythonTask(name=’task_3’,
callback=inc_number)

set up the graph of the DAG
as a linear sequence of tasks
d.define({

task_1: task_2,
task_2: task_3

})

�

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA043

THPHA043
1458

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management and Processing

LIGHTFLOW AT THE AUSTRALIAN
SYNCHROTRON

Lightflow at the MX Beamline
The two Crystallography beamlines (MX1, MX2) at the

Australian Synchrotron have employed a custom made data

management workflow for a number of years. Both the

raw and reconstructed data of an experiment is compressed

into squashfs files, verified and stored in the central stor-

age system of the Australian Synchrotron. Recently this

workflow has been upgraded to use Lightflow in order to

take advantage of a distributed system to compress multiple

experiments at the same time. The updated setup consists

of a management virtual machine that hosts the workflow

and DAG queues as well as acting as a REST endpoint for

starting the squashfs workflow. Three physical servers act

as squashfs nodes. The workflow is triggered by a HTTP

REST call from the experiment change management system

at the Crystallography beamlines.

Lightflow at the SAXS/WAXS Beamline
Several data processing pipelines are implemented using

Lightflow for the SAXS/WAXS beamline. An example is the

phaseID pipeline. This pipeline identifies diffraction peak

positions within SAXS profiles and infers the most likely

Space Group. This pipeline enables researchers to rapidly

determine phase diagrams for self-assembled lyotropic liq-

uid crystal systems. These systems are important for drug

delivery and controlled release.

CONCLUSION
Lightflow is a lightweight and distributed workflow sys-

tem written in Python and has been released as open source

software on GitHub [1]. It is currently used at several beam-

lines at the Australian Synchrotron for managing data or im-

plementing data processing pipelines. The next steps are to

extend the use of Lightflow at the Australian Synchrotron to

the experiment change management at beamlines, complex

data management workflows and auto processing workflows

at the Crystallography beamlines.

REFERENCES
[1] Lightflow, https://github.com/

AustralianSynchrotron/lightflow

[2] Celery, http://www.celeryproject.org

[3] NetworkX, https://networkx.github.io

[4] Redis, https://redis.io

[5] MongoDB, https://www.mongodb.com

[6] Pandas, http://pandas.pydata.org

[7] Numpy, http://www.numpy.org

[8] Cloudpickle, https://github.com/cloudpipe/
cloudpickle

[9] Click, http://click.pocoo.org

[10] Lightflow Filesystem, https://github.com/
AustralianSynchrotron/lightflow-filesystem

[11] EPICS, http://www.aps.anl.gov/epics

[12] Lightflow EPICS, https://github.com/
AustralianSynchrotron/lightflow-epics

[13] Lightflow Rest, https://github.com/
AustralianSynchrotron/lightflow-rest

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA043

Data Management and Processing
THPHA043

1459

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

