
ASCI: A COMPUTE PLATFORM FOR RESEARCHERS AT THE

AUSTRALIAN SYNCHROTRON

J. Marcou, R. Bosworth, R. Clarken, P. Martin, A. Moll

Australian Synchrotron – ANSTO, Melbourne, Australia

Abstract

The volume and quality of scientific data produced at the

Australian Synchrotron continues to grow rapidly due to

advancements in detectors, motion control and automation.

This means it is critical that researchers have access to com-

puting infrastructure that enables them to efficiently process

and extract insight from their data. To facilitate this, we

have developed a compute platform to enable researchers

to analyse their data in real time while at the beamline as

well as post-experiment by logging in remotely. This system,

named ASCI, provides a convenient web-based interface to

launch Linux desktops running inside Docker containers on

high-performance compute hardware. Each session has the

user’s data mounted and is preconfigured with the software

required for their experiment.

INTRODUCTION

ASCI consists of a cluster of high performance compute

nodes and a number supporting applications. These include

an application for launching and managing instances (asci-

api), a web interface (asci-webui) and a proxy server for

relaying connections (asci-proxy).

Figure 1: Overview of launching an ASCI session.

The sequence of events involved in creating and connect-

ing to an ASCI desktop session is illustrated in Fig. 1. Users

first log in to the web interface and select an environment

appropriate for processing their data. The webui sends a re-

quest for a new instance of that environment type to the asci-

api. The asci-api selects the best compute node to launch

the instance on based upon the requirements of the environ-

ment and the load on the cluster. Once it has picked a node,

the asci-api launches a Docker container based upon the

requested environment. The user is then presented with an

icon representing the running session and they can connect

to this desktop from their web browser.

When the user initiates a connection, a VNC session is

created inside the Docker instance with a one-time password.

This password is used to launch a NoVNC connection in the

user’s browser and the user is presented with their desktop

and can commence analysing their data.

DOCKER AND ASCI ENVIRONMENTS

Docker containers are a technology for creating isolated

process environments on Linux [1]. We chose this technol-

ogy for the ASCI user environments because they deliver

almost identical performance compared with running appli-

cations on the bare-metal operating system, while enabling

multiple users to simultaneously utilise the node. Docker

also enables us to create predefined environments, tailored

with the applications required for different types of experi-

ments. Each environment is based on a Docker image which

is defined by a text file outlining how to prepare the desktop.

These image recipes support inheritance, enabling us to have

a base image with installs the ASCI infrastructure applica-

tions and then child images with the specialised scientific

software for the different experiments, as shown in Fig. 2.

Figure 2: Components of an ASCI Environment.

WEB INTERFACE

A goal of the ASCI project was to allow users to connect

to desktop sessions through their standard browser rather

than requiring users run a specialised application such as a

VNC client. This greatly lowers the barrier to entry to using

the system and allows users to access it from any operating

system.

We built the web interface using Flask for the server and

React for generating the front-end. For rendering the desk-

tops in the browser, we utilise NoVNC [2] which delivers a

VNC connection over WebSockets. This results in a respon-

sive interface that runs on all platforms, including mobile

and tablet. The appearance of an ASCI Desktop connected

over NoVNC is shown in Fig. 3.

VIRTUALGL

In order to provide GPU hardware acceleration to multiple

ASCI instances on one node, we need to use a modification

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA042

Data Management and Processing
THPHA042

1455

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 3: ASCI sessions deliver the familiar Mate desktop

environment as well scientific software applications.

of the traditional X architecture. Usually, the X server has

direct access to the GPU hardware and this allows graphical

application to execute OpenGL instructions. The challenge

when running multiple desktops on a single node is that

multiple X servers cannot share direct access to the same

GPU hardware.

To address this, we run a single X server directly on the

node; this is known as the 3DX server. Every ASCI instance

then runs its own internal 2DX server which handles graph-

ical applications, such as the Mate desktop environment.

When applications make use of the GPU, we launch them

with environment variables which causes them to load Vir-

tualGL libraries in place of the standard OpenGL libraries.

The VirtualGL libraries will catch and forward all OpenGL

instructions to the 3DX server which then executes them on

the GPU [3].

DEPLOYMENT

Every component of the ASCI system runs inside its own

Docker container. This enables us to precisely define the en-

vironment of each application, such as the operating system

and dependencies, and to easily reproduce the applications

on different hosts. It also means when a developer tests

applications on their local machine, they are doing so in

the same environment as it will run in production. To fa-

cilitate deploying updates we created an application called

Autobuild which receives notifications from our Bitbucket

server whenever a tag is added to an application’s git repos-

itory. When Autobuild sees a new tag it clones the code

from Bitbucket and uses Docker to build an image for the

application based on a Docker file in the repository. The

built image is then pushed to our internal Docker registry

ready for deployment.

To provision machines to run the Docker containers we use

Terraform [4]. This enables us to define, in code, a recipe for

creating Virtual Machines on our VMware vSphere cluster

and automatically installing and configuring the operating

system. For bare-metal systems, such as the compute nodes,

Terraform configures a service called Matchbox [5] to enable

network booting (PXE) based on the machine’s motherboard

UUID.

Every machine in the ASCI system runs CoreOS Con-

tainer Linux which is optimized for container environments

and configurable with manifest files. On bare-metal systems,

the operating system is loaded in-memory, reducing the state

footprint of the system.

MONITORING

To monitor ASCI we use a collection of open source tools

known as the Elastic Stack [6]. This includes a database,

Elastic Search, for capturing logs and metrics, and the front-

end website, Kibana, for viewing logs and creating dash-

boards. To harvest logs we have the applications inside the

Docker containers log to standard out and configure Docker

to forward the logs to journald. A utility called Journalbeat

then collects the logs and sends them to an Elastic Search

pipeline based on the source of the log. The pipeline parses

the log and ingests the output into Elastic Search. For alert-

ing, we have an application called ElastAlert monitor the

Elastic Search database and trigger a Slack notification based

on certain rules. This enables us to be instantly alerted when-

ever an error occurs or in the case of unusual user behaviour

on the website which may be indicative of an attack on the

system.

CONCLUSION

ASCI is now in use at the Australian Synchrotron for pro-

cessing data being produced at the Medical Imaging, X-ray

Fluorescence Microscopy and Micro-crystallography beam-

lines. The simple web interface and tailored environments

provide an easy and intuitive platform for users to process

their data and the automated build systems allow fast and

painless deployment of updates. Future upgrades to the

system will include supporting alternative interfaces to the

environments, such as Jupyter Notebooks, and integrating a

batch job submission system to distribute processing tasks

across multiple nodes.

REFERENCES

[1] Docker, https://www.docker.com

[2] NoVNC, http://novnc.com

[3] VirtualGL, https://www.virtualgl.org

[4] Hashicorp Terraform, https://www.terraform.io

[5] Matchbox, https://coreos.com/matchbox

[6] Elastic Stack, https://www.elastic.co

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA042

THPHA042
1456

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management and Processing


