
UPGRADE OF THE CERN RADE FRAMEWORK ARCHITECTURE USING

RabbitMQ AND MQTT

O. O. Andreassen, F. Marazita, M. K. Miskowiec, CERN, Geneva, Switzerland

Abstract
AMQP (Advanced Message Queuing Protocol) was

originally developed for the finance community as an open
way to communicate the vastly increasing over-the-counter
trace, risk and clearing market data, without the need for a
proprietary protocol and expensive license. In this paper,
we explore the possibility to use AMQP with MQTT (Mes-
sage Queue Telemetry Transport) extensions in a cross

platform, cross language environment, where the commu-
nication bus becomes an extendible framework in which
simple/thin software clients can leverage the many expert
libraries at CERN.

INTRODUCTION

The Rapid Application Development Environment
(RADE) was initially developed to make it possible to in-
terface LabVIEWTM based equipment and software with
the CERN technical infrastructure. As part of this imple-
mentation, a multi-tier communication layer was intro-
duced called RADE Services [1].

The current implementation of the RADE Services are

based on custom-coded Java application interfaces linking
the RADE client interfaces with an Apache Tomcat Web
Server [1]. Despite the stability and performance of this
implementation, there are several issues that need to be ad-
dressed in order to improve the scalability, reusability and
cluster performance of the service.

Custom code forces developers to rewrite and sometimes
re-design whenever the dependent libraries change.

Maintenance has proven to be time-consuming and with
heavy traffic, the solution doesn’t scale well.

To address this, we started looking at industrial solutions
working in a more efficient and compartmentalized way,
reducing code redundancy. Moreover, in search of better
approach it was necessary to uphold two major require-
ments– platform independence and plugin support for
JAVA – LabVIEWTM communication [1].

In this paper, we will show how we try to address this

problem by linking most of the various services and inter-
faces via a commercially supported, well documented soft-
ware layer called RabbitMQ, and leverage the interopera-
bility by reducing the software complexity and mainte-
nance efforts [2].

CERN Infrastructure

The technical infrastructure at CERN consists of several

different front-end devices, databases, sensors and experi-
mental equipment (See figure 1).

Figure 1 : Simplified view of the CERN Technical
Infrastructure

To keep track of the equipment, the CERN Controls
Configuration Database (CCDB) holds the information de-
scribing the different data interfaces and the relations be-
tween the hardware and software. You will also find infor-

mation describing the network interfaces and every device
connected to the CERN technical and general purpose net-
work [2].

Access to the CCDB is provided by the middleware and
communication layers.

The Controls Middleware (CMW) framework enables
client applications to connect and retrieve data from CERN
accelerator equipment [3] [4].

Apart from databases there are also several file systems
designed for data storage [5]:

• DFS (Distributed File System)

• NFS (Network File System)

• AFS (Andrew File System)

• EOS

RADE Services

The RADE framework aims to give users a total package
for development, maintenance and support through well-
defined templates, guidelines and documentation. RADE

libraries make use of a distributed architecture (See figure
2), with several application servers hosting dedicated com-
munication and analysis libraries [1].

As an example, the Java API for Parameter Control
(JAPC) is a communication layer to control accelerator de-
vices from Java. In the RADE Services stack, JAPC is used
as a unified software API where you can get access to most
parameters of the CERN accelerators control parameters.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA038

THPHA038
1446

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management and Processing

It combines several databases, file formats and inter pro-
cess communication mechanisms that we make use of in
the RADE Services RabbitMQ bridge [1][2].

Figure 2: The RADE Framework Distributed Architecture

In addition to JAPC, many different interfaces have been
deployed in the RADE Services infrastructure [1]:

• Java API for Parameter Control (JAPC) is an API

for control system parameters [1].

• The Injector Control Architecture (InCA) is a ser-
vice responsible for get, set and subscribe opera-
tions through InCA libraries [6].

• Distributed Information Management (DIM) Ser-

vice provides subscription using the DIM library
[7].

• CERN Accelerator Logging Service (CALS) al-
lows LabVIEWTM users access to CERN data-
bases [2].

• PLSLineListener is a project for PLSLine sub-

scription [1].

• LHC Software Architecture (LSA) is responsible
for setting new parameters into the LSA database
and retrieving trim history [1].

• JAPCPublisher adds functionality to JAPC for

publishing data to the CALS database [1][3].

• ServletChecker keeps the availability of the pre-
vious projects in the RADE Servers.

Apache Tomcat

Apache Tomcat is an open source web server, developed
by the Apache Software Foundation. Apache Tomcat im-
plements several Java EE specifications and provides
Java HTTP web server environment where Java web appli-
cations can run [8].

RabbitMQ

RabbitMQ is an open source, lightweight message bro-
ker with a built-in end to end queueing mechanism that en-

ables applications to share data using a common well de-
fined protocol. It brings benefits such as load balancing and
job distribution [2].

RabbitMQ ships with several interfaces that makes it

possible to simultaneously cross communicate between
multiple servers and clients across different programming
languages. This, along with a comprehensive list of tutori-
als, strong community support and explicit examples, sim-
plifies the overhead of developing dedicated applications
since most of the business logic is outsourced and re-used
between the applications via service managers [2].

The RabbitMQ broker is built upon the Advanced Mes-
sage Queueing Protocol (AMQP). It has several extensions

such as the Message Queue Telemetry Transport (MQTT)
mechanism that provides a powerful and flexible solution
for communication between software clients and servers at
CERN.

AMQP is an openly published wire specification for
asynchronous messaging and standard protocol for mes-
sage-oriented middleware [9].

MQTT is a machine-to-machine connectivity protocol,

designed as a lightweight messaging transport, typically
used in the industry for endpoint communication [10].

The RabbitMQ broker provides several excellent man-
agement-plugins that works as a HTTP-based APIs where
one for example can monitor and manage RabbitMQ clus-
ters through browser-based user interfaces [2].

 Apache Kafka

Apache Kafka is an open-source stream processing plat-

form developed by the Apache Software Foundation writ-
ten in Scala and Java. Kafka is used for building real-time
data pipelines and streaming apps. It is scalable, fault-tol-
erant, fast, and used in production in many companies. The
project aims to provide a unified, high-throughput, low-la-
tency platform for handling real-time data feeds [11].

 STUDY

Before introducing the new architecture, we studied the
existing implementation to explore its advantages and dis-
advantages. Moreover, we discussed benefits of using bro-
ker-based approach over peer to peer communication or us-
age of Kafka. Our study shows superior results of Rab-

bitMQ over other possible solutions.

Apache Tomcat

The first version of the Java based distributed RADE
Services was built upon applications interfacing with an
Apache Tomcat Web Server. The LabVIEWTM application
interfaces were communicating with the Tomcat server us-
ing HTTP POST methods and TCP/IP listeners (See figure

3). This implementation provided a stable and relatively
fast interface, but it lacked the scalability and flexibility of
today’s modern message brokers. In addition, the imple-
mentation had a lot of code repetition and redundancy. Sev-
eral separate static wrappers were used for every unique
service on both the server (Java) and client (LabVIEWTM)
side. This was one of the main points we wanted to address

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA038

Data Management and Processing
THPHA038

1447

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

and one of the incentives for the project: introducing com-
mon virtual classes in the software stack that easily could
be overridden for specific services. At the same time, we
wanted the new service to be capable of adapting to all fu-

ture changes, but keeping the existing clients backwards
compatible and uninterrupted.

Figure 3: Apache Tomcat Web Server Implementation
Architecture

Broker versus Peer to Peer Communication

Depending on the requirements, it is possible to choose
either a broker or broker-less approach. The choice resides
mainly on four features: scalability, maintenance, availa-
bility and management.

In a broker-less, peer to peer based system, the commu-

nication is typically implemented independently, case by
case, by the developer. The implementation can be based
on a common class and communication technology, but
typically, as time goes by, these common components gets
adapted to serve new needs in each unique component.

Also, if you need to inspect or handle multiple peers/con-
nections simultaneously (scalability), have them join serv-
ers or access services and at the same time (load balancing)

risk network outage and infrastructure downtime (availa-
bility), a message storage broker approach is more suited
due to its compartmentalized nature.

Issues with consumer response time also benefit from the
ability to distinguish between network error and messages
lost in transit. Another important aspect is the management
of the system. A broker-based approach provides central-
ized information about connected clients, which
improves the scalability of your system.

Even though peer to peer models often are simpler to im-
plement, their complexity grows when factoring in mainte-
nance, availability and management. For medium to large
sized applications it is almost always more advantageous
to make use of brokers instead of implementing features
individually.

RabbitMQ versus Apache Kafka

Table 1. presents a comparison between the RabbitMQ
broker and Kafka. Kafka claims to have a five times faster

speed of processing events than RabbitMQ, but it lacks the
advantages of high availability and message acknowledge-
ment. This might prove to be a liability when valuing data
integrity and trying to prevent loss of data in critical appli-
cations [2] [11].

RabbitMQ also supports additional AMQP communica-
tion channels through its vast amounts of plugins, whereas
Kafka only supports exchanges. While messages in Kafka
stream are ordered, the delivery (ordered) is only guaran-

teed if they are published on a single channel, passed
through one exchange and queue and received by one chan-
nel [2] [11].

The advantage of using Kafka over RabbitMQ for the
RADE Services boils down to mainly the speed of receiv-
ing and sending messages. RabbitMQ shows better support
on dedicated protocols, it provides acknowledgements and
high availability, which improves stability and overall se-

curity in the architecture [2] [11].

Table 1: RabbitMQ and Kafka Comparison

 RabbitMQ Kafka Custom

TomCat

Type

Broker-cen-
tric

Producer-
centric

P2P

Speed 120k

events/sec

280-350k

events/sec

124k

events/sec

HA Yes No No

ACK Yes No

AMQP Exchange,
binding
queues

Exchange (no
queue)

No

Delivery Ordered Ordered
(with limita-

tions)

FIFO

 In addition to the above-mentioned features, Rab-
bitMQ also provides other benefits that make it good
choice compared to other message brokers: an open, well
defined and community supported AMQP standard, Er-
lang-based implementation that allows simple clustering

and scalability. It is also more reliable and crash resistant
than Apache Kafka [11].

ARCHITECTURE

The new system architecture consists of four main lay-
ers: The service layer, the application Layer, the entity
layer and the data layer (See Figure 4).

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA038

THPHA038
1448

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management and Processing

Figure 4: Project architecture.

The RADE CORE Service is a generic Java based virtual

class that extends all the communication layers needed to
connect to the CERN technical infrastructure (such as

JAPC, CALS, ALARM etc.). Clients (LabVIEWTM and
web) communicate with the RADE CORE service via the
“entity layer”. The entity layer proxies’ data to a free bro-
ker using a designated routing key. The routing key ensures
that the messages sent are properly routed to the intended
subscriber/listener and guarantees delivery in a well-bal-
anced cluster. Once a communication link has been estab-
lished, a dedicated data queue is created in the data layer,
facilitating communication between the requested service

and its client, via the routing key [2].
The Data Layer contains five main queues, defined

within the RabbitMQ management system:

• Error queue

• RADE Server status log queue

• Core request queue

• MQTT adapter queue

• Data queue
The MQTT Adapter Queue, created by the MQTT

plugin is automatically generated when a subscription is
initiated.
 The current “entity layer” is comprised of three Rab-
bitMQ servers running Scientific Linux 6. The servers are
set up to be a single cluster, and the load balancer automat-
ically selects which of the three services to use [2].

TESTBED

The current testbed is configured to run on two virtual
machines working as a cluster (based on RedHats Open-
Stack) [12]. In this configuration clients can connect to any
node in the cluster and connect to all or any existing queue.
All exchanges, queues, permissions and virtual hosts are

mirrored across the nodes. This configuration makes use of
the High Availability Proxy (HAProxy), providing us with
load balancing [13].

To communicate with LabVIEWTM and Web Clients, the
following plugins were installed:

• rabbitmq_mqtt plugin for MQTT communica-
tion

• rabbitmq_management plugin for HTTP-based
management

All data exchange queues, interfaces, ports and service
names were manually configured in the dedicated Rab-
bitMQ and plugin configuration files.

INTERFACES

In this project, we mainly distinguish between two types
of service interfaces: The RADE Java Services and Lab-
VIEWTM MQTT clients. What is most important in this
case is the broker’s support for various protocols. Apart
from AMQP used in JAVA services, the chosen broker

needs to provide support for the MQTT protocol that is
used in the LabVIEWTM Client.

Workflow

In the test system, all clients are connected and send their
requests to a dedicated broker cluster. Through the Broker
the request is sent to an appropriate service that is executed
depending on the request message payload. The requested

information is sent back to the broker, and then relayed to
the requesting client. The simplified workflow is shown on
the Figure 5.

Figure 5: Workflow

LabVIEW TM Client

The choice of MQTT protocol assures that the developed
applications are platform independent, which was not pos-
sible using the AMQP protocol. All available libraries us-
ing AMQP protocols are based on .NET technology which

is not supported on Linux systems. The MQTT library used
in our applications is based on pure TCP/IP protocol,
which allows them to be executed on every platform.

Java Interface

The RADE Java Services communicates with RabbitMQ
using a dedicated server library provided by the official
RabbitMQ stack.

We implemented a wrapper for this library, called

RADE CORE. RADE CORE functions as the main inter-
face to the RADE Services. It features access control, re-
source routing and monitoring. Through its virtual and
scalable implementation, one can run several instances,
simultaneously, on the same or different servers. All the
instances will cross communicate using the RabbitMQ bro-
ker, ensuring the data integrity being kept, and at the same
time making it possible to launch multiple instances of the
same service with different environment configurations.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA038

Data Management and Processing
THPHA038

1449

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

All the RADE JAVA Services are working as plugin
based extensions of RADE CORE. This makes it possible
to execute specific actions for each RADE Service.

CROSS PLATFORM COMMUNICATION

The RabbitMQ messages between LabVIEWTM and
JAVA was serialized using JSON strings or LabVIEWTM
variants (binary) [14]. JSON was chosen because of its

popularity and wide spread, facilitating inter-language
communication, while LabVIEWTM variants was used to
ensure backwards compatibility with the existing services.

When launched, the RADE CORE initializes a commu-
nication channel with the broker using a native AMQP pro-
tocol. This gives the core service all the information to
track the connections, register queue names, and all the
routing keys in use.

From the client side (typically LabVIEWTM), the com-

munication is mainly using the MQTT protocol. Infor-
mation is sent using a service-dedicated routing key to the
broker. This routing key ensures that the request arrives at
the right services, and it makes sure that the data exchanged
is kept intact [10].

When a client connects, The MQTT subscription queue
is automatically created. Our broker, working as a cluster,
processes the request and passes the message through to
RADE CORE interface. Here, depending on the request,

the dedicated plugin is launched.
Once a communication channel has been established in

the RabbitMQ cluster, the requested data is sent to the bro-
ker and then to the subscribed client.

Once the data exchange is done (ranging from millisec-
onds to days) the client sends a request to close the service.

Finally, when the service has shut down, the RabbitMQ
broker shuts down the communication channel and deletes

the message queue.

VALIDATION

The RADE Service implementation of the RabbitMQ

broker was tested in terms of speed, reliability, perfor-
mance and throughput and compared with the older
Apache Tomcat based web service implementation. All the
tests were conducted using built in Linux tools such as
nload (network traffic), top and the regular system monitor.
We observed no significant difference between speeds
while sending small sized (< 1kB) messages, but it was ob-
served that on larger messages (>1MB) the RabbitMQ
cluster would lag behind slightly compared to Apache

Tomcat custom implementation. This however could be
compensated by reducing the package size and deploying
several clusters. In addition, the RabbitMQ solution pro-
vides authentication and a guarantee of message delivery
which the custom server doesn’t have, and for stream like
connections (video feeds, Beam Position Monitors, etc.),
Apache Kafka is considered being deployed.

CONCLUSION

Introducing RabbitMQ broker with AMQP and MQTT
extension makes it possible to improve scalability, redun-

dancy, performance and development flexibility for our ap-
plications. Lightweight, open source protocols provide
cross platform and cross language communication.

Even though the broker-based implementation is less
performant in terms of throughput compared to the previ-
ous implementation, a cluster based backend such as Rab-
bitMQ gives us a safer and more robust architecture, which
assures that no messages will be lost in case of node fail-
ures or minor interruptions in the network. All of the men-

tioned features, as well as increase in flexibility, help us to
move forward towards more standardized and efficient ap-
plications with smaller footprints.

FUTURE PLANS

As a future step, it is planned to create an access control
layer, where clients will connect using RabbitMQ and
separate RADE Servers for each individual service.

Access control, depending on the type of the request,
will select the appropriate communication type, for exam-
ple RabbitMQ or Kafka, and forward the request to the
specific RADE CORE.

REFERENCES

[1] O. Ø. Andreassen et al. “The LabVIEWTM RADE
framework distributed architecture”, ICALEPCS
2011, Grenoble, France, WEMAU003.

[2] RabbitMQ website: http://www.rabbitmq.com.
[3] Z. Zaharieva, “Database foundation for the configura-

tion management of the CERN accelerator controls
systems”, ICALEPS2011, Grenoble, France, MO-
MAU004.

[4] K. Kostro, “The control middleware (CMW) at CERN
status and usage”, ICALEPCS2003, Gyeongju, Ko-
rea, WE201.

[5] CERN Information Technology Department website:
http://information-technology.web.cern.ch/services.

[6] InCa website: https://espace.cern.ch/be-dep-work-
space/op/ps/InCA%20PS/InCA%20for%20Dum-
mies.aspx

[7] DIM website: http://dim.web.cern.ch/dim
[8] Apache Tomcat website: http://tomcat.apache.org/
[9] AMQP website: https://www.amqp.org/.

[10] MQTT website: http://mqtt.org/.

[11] Apache Kafka website: https://kafka.apache.org/.
[12] OpenStack website: https://www.openstack.org/
[13] HAProxy website: http://www.haproxy.org/
[14] JSON website: http://www.json.org/

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA038

THPHA038
1450

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management and Processing

