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Abstract 
AMQP (Advanced Message Queuing Protocol) was 

originally developed for the finance community as an open 
way to communicate the vastly increasing over-the-counter 
trace, risk and clearing market data, without the need for a 
proprietary protocol and expensive license. In this paper, 
we explore the possibility to use AMQP with MQTT (Mes-
sage Queue Telemetry Transport) extensions in a cross 

platform, cross language environment, where the commu-
nication bus becomes an extendible framework in which 
simple/thin software clients can leverage the many expert 
libraries at CERN. 

INTRODUCTION 

The Rapid Application Development Environment 
(RADE) was initially developed to make it possible to in-
terface LabVIEWTM based equipment and software with 
the CERN technical infrastructure. As part of this imple-
mentation, a multi-tier communication layer was intro-
duced called RADE Services [1]. 

The current implementation of the RADE Services are 

based on custom-coded Java application interfaces linking 
the RADE client interfaces with an Apache Tomcat Web 
Server [1]. Despite the stability and performance of this 
implementation, there are several issues that need to be ad-
dressed in order to improve the scalability, reusability and 
cluster performance of the service.  

Custom code forces developers to rewrite and sometimes 
re-design whenever the dependent libraries change. 

Maintenance has proven to be time-consuming and with 
heavy traffic, the solution doesn’t scale well.  

To address this, we started looking at industrial solutions 
working in a more efficient and compartmentalized way, 
reducing code redundancy. Moreover, in search of better 
approach it was necessary to uphold two major require-
ments– platform independence and plugin support for 
JAVA – LabVIEWTM communication [1].  

In this paper, we will show how we try to address this 

problem by linking most of the various services and inter-
faces via a commercially supported, well documented soft-
ware layer called RabbitMQ, and leverage the interopera-
bility by reducing the software complexity and mainte-
nance efforts [2].  

CERN Infrastructure 

The technical infrastructure at CERN consists of several 

different front-end devices, databases, sensors and experi-
mental equipment (See figure 1). 

 

Figure 1 : Simplified view of the CERN Technical 
Infrastructure 

To keep track of the equipment, the CERN Controls 
Configuration Database (CCDB) holds the information de-
scribing the different data interfaces and the relations be-
tween the hardware and software. You will also find infor-

mation describing the network interfaces and every device 
connected to the CERN technical and general purpose net-
work [2]. 

Access to the CCDB is provided by the middleware and 
communication layers. 

The Controls Middleware (CMW) framework enables 
client applications to connect and retrieve data from CERN 
accelerator equipment [3] [4]. 

Apart from databases there are also several file systems 
designed for data storage [5]: 

• DFS (Distributed File System) 

• NFS (Network File System) 

• AFS (Andrew File System) 

• EOS 

RADE Services 

The RADE framework aims to give users a total package 
for development, maintenance and support through well-
defined templates, guidelines and documentation. RADE 

libraries make use of a distributed architecture (See figure 
2), with several application servers hosting dedicated com-
munication and analysis libraries [1].  

As an example, the Java API for Parameter Control 
(JAPC) is a communication layer to control accelerator de-
vices from Java. In the RADE Services stack, JAPC is used 
as a unified software API where you can get access to most 
parameters of the CERN accelerators control parameters. 
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It combines several databases, file formats and inter pro-
cess communication mechanisms that we make use of in 
the RADE Services RabbitMQ bridge [1][2]. 

 

 

Figure 2: The RADE Framework Distributed Architecture 

In addition to JAPC, many different interfaces have been 
deployed in the RADE Services infrastructure [1]: 

• Java API for Parameter Control (JAPC) is an API 

for control system parameters [1]. 

• The Injector Control Architecture (InCA) is a ser-
vice responsible for get, set and subscribe opera-
tions through InCA libraries [6]. 

• Distributed Information Management (DIM) Ser-

vice provides subscription using the DIM library 
[7]. 

• CERN Accelerator Logging Service (CALS) al-
lows LabVIEWTM users access to CERN data-
bases [2]. 

• PLSLineListener is a project for PLSLine sub-

scription [1]. 

• LHC Software Architecture (LSA) is responsible 
for setting new parameters into the LSA database 
and retrieving trim history [1]. 

• JAPCPublisher adds functionality to JAPC for 

publishing data to the CALS database [1][3]. 

• ServletChecker keeps the availability of the pre-
vious projects in the RADE Servers.  

Apache Tomcat 

Apache Tomcat is an open source web server, developed 
by the Apache Software Foundation. Apache Tomcat im-
plements several Java EE specifications and provides 
Java HTTP web server environment where Java web appli-
cations can run [8].  

RabbitMQ 

RabbitMQ is an open source, lightweight message bro-
ker with a built-in end to end queueing mechanism that en-

ables applications to share data using a common well de-
fined protocol. It brings benefits such as load balancing and 
job distribution [2].  

RabbitMQ ships with several interfaces that makes it 

possible to simultaneously cross communicate between 
multiple servers and clients across different programming 
languages. This, along with a comprehensive list of tutori-
als, strong community support and explicit examples, sim-
plifies the overhead of developing dedicated applications 
since most of the business logic is outsourced and re-used 
between the applications via service managers [2].  

The RabbitMQ broker is built upon the Advanced Mes-
sage Queueing Protocol (AMQP). It has several extensions 

such as the Message Queue Telemetry Transport (MQTT) 
mechanism that provides a powerful and flexible solution 
for communication between software clients and servers at 
CERN.  

AMQP is an openly published wire specification for 
asynchronous messaging and standard protocol for mes-
sage-oriented middleware [9]. 

MQTT is a machine-to-machine connectivity protocol, 

designed as a lightweight messaging transport, typically 
used in the industry for endpoint communication [10].  

The RabbitMQ broker provides several excellent man-
agement-plugins that works as a HTTP-based APIs where 
one for example can monitor and manage RabbitMQ clus-
ters through browser-based user interfaces [2]. 

 Apache Kafka 

Apache Kafka is an open-source stream processing plat-

form developed by the Apache Software Foundation writ-
ten in Scala and Java. Kafka is used for building real-time 
data pipelines and streaming apps. It is scalable, fault-tol-
erant, fast, and used in production in many companies. The 
project aims to provide a unified, high-throughput, low-la-
tency platform for handling real-time data feeds [11]. 

 STUDY 

Before introducing the new architecture, we studied the 
existing implementation to explore its advantages and dis-
advantages. Moreover, we discussed benefits of using bro-
ker-based approach over peer to peer communication or us-
age of Kafka. Our study shows superior results of Rab-

bitMQ over other possible solutions. 

Apache Tomcat 

The first version of the Java based distributed RADE 
Services was built upon applications interfacing with an 
Apache Tomcat Web Server. The LabVIEWTM application 
interfaces were communicating with the Tomcat server us-
ing HTTP POST methods and TCP/IP listeners (See figure 

3). This implementation provided a stable and relatively 
fast interface, but it lacked the scalability and flexibility of 
today’s modern message brokers. In addition, the imple-
mentation had a lot of code repetition and redundancy. Sev-
eral separate static wrappers were used for every unique 
service on both the server (Java) and client (LabVIEWTM) 
side. This was one of the main points we wanted to address 
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and one of the incentives for the project: introducing com-
mon virtual classes in the software stack that easily could 
be overridden for specific services. At the same time, we 
wanted the new service to be capable of adapting to all fu-

ture changes, but keeping the existing clients backwards 
compatible and uninterrupted. 

 

Figure 3: Apache Tomcat Web Server Implementation 
Architecture 

Broker versus Peer to Peer Communication 

Depending on the requirements, it is possible to choose  
either a broker or broker-less approach. The choice resides 
mainly on four features: scalability, maintenance, availa-
bility and management.  

In a broker-less, peer to peer based system, the commu-

nication is typically implemented independently, case by 
case, by the developer. The implementation can be based 
on a common class and communication technology, but 
typically, as time goes by, these common components gets 
adapted to serve new needs in each unique component. 

Also, if you need to inspect or handle multiple peers/con-
nections simultaneously (scalability), have them join serv-
ers or access services and at the same time (load balancing) 

risk network outage and infrastructure downtime (availa-
bility), a message storage broker approach is more suited 
due to its compartmentalized nature. 

Issues with consumer response time also benefit from the 
ability to distinguish between network error and messages 
lost in transit. Another important aspect is the management 
of the system. A broker-based approach provides central-
ized information about connected clients, which  
improves the scalability of your system.  

Even though peer to peer models often are simpler to im-
plement, their complexity grows when factoring in mainte-
nance, availability and management. For medium to large 
sized applications it is almost always more advantageous 
to make use of brokers instead of implementing features 
individually. 

RabbitMQ versus Apache Kafka 

Table 1. presents a comparison between the RabbitMQ  
broker and Kafka. Kafka claims to have a five times faster 

speed of processing events than RabbitMQ, but it lacks the 
advantages of high availability and message acknowledge-
ment. This might prove to be a liability when valuing data 
integrity and trying to prevent loss of data in critical appli-
cations [2] [11].  

RabbitMQ also supports additional AMQP communica-
tion channels through its vast amounts of plugins, whereas 
Kafka only supports exchanges. While messages in Kafka 
stream are ordered, the delivery (ordered) is only guaran-

teed if they are published on a single channel, passed 
through one exchange and queue and received by one chan-
nel [2] [11]. 

The advantage of using Kafka over RabbitMQ for the 
RADE Services boils down to mainly the speed of receiv-
ing and sending messages. RabbitMQ shows better support 
on dedicated protocols, it provides acknowledgements and 
high availability, which improves stability and overall se-

curity in the architecture [2] [11].  
 

Table 1: RabbitMQ and Kafka Comparison 

 RabbitMQ Kafka Custom 

TomCat 

Type 

 
Broker-cen-
tric 

Producer-
centric 

P2P 

Speed 120k 

events/sec 

280-350k 

events/sec 

124k 

events/sec 

HA Yes No No 

ACK Yes No  

AMQP Exchange,  
binding 
queues 

Exchange (no 
queue) 

No 

Delivery Ordered Ordered 
(with limita-

tions) 

FIFO 

      
 In addition to the above-mentioned features, Rab-
bitMQ also provides other benefits that make it good 
choice compared to other message brokers: an open, well 
defined and community supported AMQP standard, Er-
lang-based implementation that allows simple clustering 

and scalability. It is also more reliable and crash resistant 
than Apache Kafka [11].  

ARCHITECTURE 

The new system architecture consists of four main lay-
ers: The service layer, the application Layer, the entity 
layer and the data layer (See Figure 4). 
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Figure 4: Project architecture. 

  
The RADE CORE Service is a generic Java based virtual 

class that extends all the communication layers needed to 
connect to the CERN technical infrastructure (such as 

JAPC, CALS, ALARM etc.). Clients (LabVIEWTM and 
web) communicate with the RADE CORE service via the 
“entity layer”. The entity layer proxies’ data to a free bro-
ker using a designated routing key. The routing key ensures 
that the messages sent are properly routed to the intended 
subscriber/listener and guarantees delivery in a well-bal-
anced cluster. Once a communication link has been estab-
lished, a dedicated data queue is created in the data layer, 
facilitating communication between the requested service 

and its client, via the routing key [2].   
The Data Layer contains five main queues, defined 

within the RabbitMQ management system: 

• Error queue 

• RADE Server status log queue 

• Core request queue 

• MQTT adapter queue 

• Data queue 
The MQTT Adapter Queue, created by the MQTT 

plugin is automatically generated when a subscription is 
initiated. 
 The current “entity layer” is comprised of three Rab-
bitMQ servers running Scientific Linux 6. The servers are 
set up to be a single cluster, and the load balancer automat-
ically selects which of the three services to use [2]. 

TESTBED 

The current testbed is configured to run on two virtual 
machines working as a cluster (based on RedHats Open-
Stack) [12]. In this configuration clients can connect to any 
node in the cluster and connect to all or any existing queue. 
All exchanges, queues, permissions and virtual hosts are 

mirrored across the nodes. This configuration makes use of 
the High Availability Proxy (HAProxy), providing us with 
load balancing [13].  

To communicate with LabVIEWTM and Web Clients, the 
following plugins were installed:  

• rabbitmq_mqtt plugin for MQTT communica-
tion 

• rabbitmq_management plugin for HTTP-based 
management 

All data exchange queues, interfaces, ports and service 
names were manually configured in the dedicated Rab-
bitMQ and plugin configuration files. 

INTERFACES 

In this project, we mainly distinguish between two types 
of service interfaces: The RADE Java Services and Lab-
VIEWTM MQTT clients. What is most important in this 
case is the broker’s support for various protocols. Apart 
from AMQP used in JAVA services, the chosen broker 

needs to provide support for the MQTT protocol that is 
used in the LabVIEWTM Client.  

Workflow 

In the test system, all clients are connected and send their 
requests to a dedicated broker cluster. Through the Broker 
the request is sent to an appropriate service that is executed 
depending on the request message payload. The requested 

information is sent back to the broker, and then relayed to 
the requesting client. The simplified workflow is shown on 
the Figure 5.  

 

Figure 5: Workflow 
 

LabVIEW TM Client 

The choice of MQTT protocol assures that the developed 
applications are platform independent, which was not pos-
sible using the AMQP protocol. All available libraries us-
ing AMQP protocols are based on .NET technology which 

is not supported on Linux systems. The MQTT library used 
in our applications is based on pure TCP/IP protocol, 
which allows them to be executed on every platform.  

Java Interface 

The RADE Java Services communicates with RabbitMQ 
using a dedicated server library provided by the official 
RabbitMQ stack.  

We implemented a wrapper for this library, called 

RADE CORE. RADE CORE functions as the main inter-
face to the RADE Services. It features access control, re-
source routing and monitoring. Through its virtual and 
scalable implementation, one can run several instances, 
simultaneously, on the same or different servers. All the 
instances will cross communicate using the RabbitMQ bro-
ker, ensuring the data integrity being kept, and at the same 
time making it possible to launch multiple instances of the 
same service with different environment configurations. 
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All the RADE JAVA Services are working as plugin 
based extensions of RADE CORE. This makes it possible 
to execute specific actions for each RADE Service. 

CROSS PLATFORM COMMUNICATION 

The RabbitMQ messages between LabVIEWTM and 
JAVA was serialized using JSON strings or LabVIEWTM 
variants (binary) [14]. JSON was chosen because of its 

popularity and wide spread, facilitating inter-language 
communication, while LabVIEWTM variants was used to 
ensure backwards compatibility with the existing services.  

When launched, the RADE CORE initializes a commu-
nication channel with the broker using a native AMQP pro-
tocol. This gives the core service all the information to 
track the connections, register queue names, and all the 
routing keys in use.  

From the client side (typically LabVIEWTM), the com-

munication is mainly using the MQTT protocol. Infor-
mation is sent using a service-dedicated routing key to the 
broker. This routing key ensures that the request arrives at 
the right services, and it makes sure that the data exchanged 
is kept intact [10]. 

When a client connects, The MQTT subscription queue 
is automatically created. Our broker, working as a cluster, 
processes the request and passes the message through to 
RADE CORE interface. Here, depending on the request, 

the dedicated plugin is launched.  
Once a communication channel has been established in 

the RabbitMQ cluster, the requested data is sent to the bro-
ker and then to the subscribed client.  

Once the data exchange is done (ranging from millisec-
onds to days) the client sends a request to close the service.  

Finally, when the service has shut down, the RabbitMQ 
broker shuts down the communication channel and deletes 

the message queue.  

VALIDATION 

The RADE Service implementation of the RabbitMQ 

broker was tested in terms of speed, reliability, perfor-
mance and throughput and compared with the older 
Apache Tomcat based web service implementation. All the 
tests were conducted using built in Linux tools such as 
nload (network traffic), top and the regular system monitor. 
We observed no significant difference between speeds 
while sending small sized (< 1kB) messages, but it was ob-
served that on larger messages (>1MB) the RabbitMQ 
cluster would lag behind slightly compared to Apache 

Tomcat custom implementation. This however could be 
compensated by reducing the package size and deploying 
several clusters. In addition, the RabbitMQ solution pro-
vides authentication and a guarantee of message delivery 
which the custom server doesn’t have, and for stream like 
connections (video feeds, Beam Position Monitors, etc.), 
Apache Kafka is considered being deployed.  

CONCLUSION 

Introducing RabbitMQ broker with AMQP and MQTT 
extension makes it possible to improve scalability, redun-

dancy, performance and development flexibility for our ap-
plications. Lightweight, open source protocols provide 
cross platform and cross language communication. 

Even though the broker-based implementation is less 
performant in terms of throughput compared to the previ-
ous implementation, a cluster based backend such as Rab-
bitMQ gives us a safer and more robust architecture, which 
assures that no messages will be lost in case of node fail-
ures or minor interruptions in the network. All of the men-

tioned features, as well as increase in flexibility, help us to 
move forward towards more standardized and efficient ap-
plications with smaller footprints.  

FUTURE PLANS 

As a future step, it is planned to create an access control 
layer, where clients will connect using RabbitMQ and  
separate RADE Servers for each individual service.  

Access control, depending on the type of the request, 
will select the appropriate communication type, for exam-
ple RabbitMQ or Kafka, and forward the request to the  
specific RADE CORE. 
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