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Abstract
Since the introduction of the MapReduce paradigm, re-

lational databases are being increasingly replaced by more

efficient and scalable architectures, in particular in environ-

ments where a querywill process Terabytes or even Petabytes

of data in a single execution. The same tendency is observed

at CERN, where data archiving systems for operational ac-

celerator data are already working well beyond their initially

provisioned capacity. Most of the modern data analysis

frameworks are not optimized for heterogeneous workloads

such as they arise in the dynamic environment of one of

the world’s largest accelerator complex. This contribution

presents a Mixed Partitioning Scheme Replication (MPSR)

as a solution that will outperform conventional distributed

processing environment configurations for almost the entire

phase-space of data analysis use cases and performance opti-

mization challenges, as they arise during the commissioning

and operational phases of an accelerator. We will present

results of a statistical analysis as well as the benchmark-

ing of the implemented prototype, which allow defining the

characteristics of the proposed approach and to confirm the

expected performance gains.

INTRODUCTION
The operation and maintenance of the Large Hadron Col-

lider (LHC) are very complex and resource intensive pro-

cesses, both relying on highly sophisticated hardware and

software systems. Among others, the currently deployed

accelerator transient data storage and processing solutions

are a crucial tool for many of the activities conducted by the

hardware experts and are an integral part of the operational

accelerator cycle. Diagnostic data is primarily collected

by two systems, the CERN Accelerator Logging Service

(CALS) [1] and the Post Mortem system (PM) [2], which

in parallel to acquiring the measurements from the same

sources, serve different purposes. The CALS system con-

tinuously monitors the accelerator hardware and logs data

at frequencies up to a few Hz, allowing for long-term trend

and behaviour analysis. On the other hand, the PM system

acquires higher frequency measurements (up to GHz) from

internal device buffers, but only for a short time-window

around the events of interest (like beam extraction from

accelerator for example). This allows for the detailed recon-

struction of the LHC state around the occurrence of relevant

events.

Upgrades of the LHC hardware systems performed dur-

ing the last long shutdown phase have pushed the originally

provisioned data ingestion rates well beyond the initially

defined boundaries, resulting in a considerable performance

loss of the deployed solutions. Despite the fact that both

systems are capable of ensuring high input throughputs, they

are no longer capable of providing the same quality of ser-

vice for the increasing user requests and new, large scale

analytical use cases. Besides the scalability issues, both

architectures provide a very limited support for data analysis

operations, forcing users to perform calculations on their

local environments rather than being integrated with each

other.

The next generation data analysis system, based on mod-

ern distributed data analysis solutions is being developed as

a response to the arising challenges. The Hadoop backend

provides resilience to failures storage solutions as well as

data locality-aware application execution scheduling. The

flexibility of the Hadoop Distributed File System (HDFS) [3]

allows the development teams to integrate tools, like Par-

quet [4], which improve the performance of the storage by

enhancing the format of the persisted files. Data processing

is performed using the Apache Spark [5], which according

to multiple reports [6,7] is more efficient than the traditional

Hadoop [8] MapReduce [9] approach. The developed in-

frastructure is horizontally scalable and resilient to various

sources of failures.

In contrast to the possible performance gains which can

be achieved by integrating modern data analysis tools into

the accelerator environment, none of the aforementioned

systems address a very important issue - the workload het-

erogeneity. The inspection of today’s workloads and a survey

conducted with LHC hardware experts has suggested that

the profile of the queries submitted to the system is very

broad and prioritize different stored object predicates when

operating on the data. The currently employed partitioning

scheme does not make a distinction between the different

query categories and provides a single time-based partition-

ing data organization strategy, which is sub-optimal for many

of the submitted user requests. Providing a solution to this

shortcoming becomes a primary goal of the multi-criteria

partitioning scheme replication presented and studied in this

work.

This paper is organized in five sections. This first section

provides an introduction to the context and problem. The

second section presents the core concepts of MPSR and

describes its integration boundaries. The following sections

describe the architecture of the developed prototype and

summarizes the results of the executed benchmarks. The

last section presents a summary of the main conclusions.
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MIXED PARTITIONING SCHEME
REPLICATION

The shortcomings of currently deployed data storage and

processing solutions are the core challenges for the novel ap-

proach studied in this paper, the Mixed Partitioning Scheme

Replication [10,11]. The proposed solution introduces op-

timizations on the file system level without modifying the

service endpoints, therefore being completely transparent

to the user. The fundamental principle of the designed tech-

nique consists of creating multiple data partitioning schemes,

optimized for a predetermined set of workload categories,

and performing the replication of individual representations.

Unlike traditional replication solutions which maintain exact

copies of the stored data structures, the MPSR organizes the

data managed by distinct replica groups differently. Imple-

menting the workload-awareness requires an initial study of

the system and the definition of data placement algorithms

according to the identified query profiles. Replications can

be managed elastically, therefore specific data sets which are

frequently accessed by the applications can be distributed

over additional cluster resources. This strategy aims at in-

creasing the number of local data executions, to improve job

performance both due to faster disk access and reduced net-

work overheads. Having implemented the aforementioned

data placement algorithms and replication schemes brings

an added benefit. It becomes possible to modify both when

the need arises, being therefore possible to adapt to changes

of data sources and/or user behaviour while maintaining

the initial efficiency of the overall infrastructure without

requiring additional resources.

Figure 1: The data ingestion pipeline.

The MPSR architecture can be split into two main, yet

independent components: data ingestion and data process-

ing. The specificities of the data collection pipeline are

presented in Figure 1. Depending on the architectural point

of the data storage and processing system at which the data

ingestion procedure is integrated, the whole process can be

split into two interconnected, yet separately managed com-

ponents. The first one is primarily responsible for retrieving

data from the data sources, performing the pre-processing

and preparing the data for its persistence to the physical

storage. The second component manages the communica-

tion process with the data storage and processing solution.

The separation of the data ingestion pipeline is driven by

the MPSR flexibility requirements. Integrating the data ac-

quisition and pre-processing mechanisms directly into the

server application for data storage and processing solution

will break its compatibility with dedicated data collection

frameworks and therefore require additional efforts to ensure

failure tolerance and scalability. Furthermore, the delegation

of the data preparation and aggregation tasks to the server

components which are deployed on the data persistence layer

will result in permanent resource allocations for the data in-

gestion process, since CERNs data storage systems have to

ingest data on a continuous basis even if the accelerators are

not operational. The solution which is commonly adopted

by applications facing similar issues [12,13] is the integra-

tion of a dedicated data collection system, like Kafka [14].

Since a similar development is foreseen for the next gener-

ation storage architecture at CERN, the design choice for

the MPSR was to delegate the data pre-processing tasks to

such an external tool. After the input is prepared for writ-

ing, the remote server is notified. Based on the user request,

the configured partitioning criteria and the cluster resource

usage, the master recurs to the MPSR module to determine

the node which will permanently persist the collected data.

Finally, the transport protocols ensure that the data is cor-

rectly uploaded from the external data ingestion application

to the identified cluster node.

Figure 2: The data processing pipeline.

The data processing pipeline (see Figure 2), in relation

to the underlying solution implementation, remains mostly

untouched with the exception of the component which deter-

mines the input files for the submitted job. Upon arrival of

the data processing request, the associated meta-data is ini-

tially inspected. Most of the meta-data analysis operations

are still handled by the original data storage and process-

ing solution. While decoding and building an appropriate

query representation, the MPSR module is invoked in or-

der to determine the partitioning criteria which will be the

most efficient in providing data for a particular user request.

Based on the current cluster usage, the resources which max-

imize the rate of local executions are allocated. Finally, the

tasks are scheduled for execution on the previously selected

machines. The entire process is transparent to the user, as

the MPSR components which calculate the input splits and

allocate the computing resources are implemented on the

server-side. For this reason, no modifications are required

on the application endpoints.

PROTOTYPE IMPLEMENTATION
In order to determine the characteristics of the proposed

approach and evaluate its performance, a prototype featuring

the core features of MPSR was designed and developed.

The implementation was integrated directly into the Hadoop

source code, which in contrast to an independent plug-in
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Figure 3: The Mixed Partitioning Scheme Replication Prototype architecture.

development, allowed to maximize the use of the existing

file system and cluster management mechanisms.

The major modifications were introduced in the Hadoop

objects FSDirectory and FSNamesystem (see as well
Figure 3). These changes were integrated into the source

code without impacting the initial system functionalities,

since there was no intention of implementing additional

features that would require managing the staging and inter-

mediary data produced by the MapReduce applications. The

new methods that were integrated into the FSDirectory
sources are inspired by the original implementations, but

adapted for operating on the MPSRINode instances. The pro-
totype supports the minimal feature set required for achiev-

ing the experiment goals, namely operations like directory

creation, file creation, appending and status retrieval. The

operations required for handling the namespace represen-

tation on the persistent storage were integrated into the

FSNamesystem instance. The changes - once again - were
based on the original implementation, but the source code

was extended to support the reconstruction of the MPSR file

system representation through the edits and fsimage files.

Solely the introduction of workload-awareness into the

Hadoop system required the definition and implementation

of a completely new module for the management of meta-

data. In the MPSR prototype, the MPSRMetaService was
integrated directly into the Namenode sources. The main

responsibility of this newmodule is the management of parti-

tioning criteria relations with the individual Datanodes. First,

the administrator has the possibility to define the replica

groups, characterized by an ordered list of the predicates.

The relation between the predicates and the specific parti-

tioning schemes are defined through an interface supporting

simplemapping. As a second step, once the service is started,

the cluster nodes are allocated to individual partitioning cri-

teria using the Round-Robin algorithm. The allocations are

stored into the meta-data file, since after a potential system

failure or restart the machines which already store MPSR

data need to be assigned to the correct replication group.

Finally, the managed associations are exposed to the remain-

der of the Namenode services, in order for the user requests

to be routed to the appropriate data sources.

The data management process is very similar to the tra-

ditional approach applied on Hadoop systems. The main

difference lies in the block storage and replication mecha-

nisms. Unlike in the original implementation, the files - after

being stored - are not automatically replicated throughout the

cluster unless the replication factor is larger than the number

of the configured partitioning criteria. For reasons explained

in the previous section, the replication process control is par-

tially granted to the external data ingestion tools. Unlike in

the traditional Hadoop systems, additional knowledge has to

be used in the MPSR prototype to determine the most appro-

priate candidates for storing the data blocks. The list of pred-

icates, passed along with the collected information allows

the modified version of the BlockManager to build the
list of the excludedNodes and favoredNodes to con-
trol in the following the data placement on the specialized

resources. The list of excludedNodes contains machines
which were assigned a partitioning criteria which is different

from the one associated with the input data. On the other

hand, the list of favoredNodes contains the nodes which
are suitable for storing data of the respective structure, and

the target destination is therefore picked randomly from the

available options.

RESULTS ANALYSIS
The performance evaluations were conducted on a clus-

ter of ten nodes, with one of the nodes configured as the

Namenode and the rest as Datanodes. The machines speci-

fications were: 8 Core Intel(R) Xeon(R) E5420 2.50 GHz

CPU, 8 Gigabyte DDR2 667MHz RAM and 2x1TB SATA

7200 rpm HDDs. The Hadoop version which was used for

implementing the prototype and further deployment is 2.6.

The data was migrated from CALS and the tests were per-

formed on the 592 Gigabytes repository. The workload sce-

narios were submitted by a custom application, specifically

developed for being able to work both with the traditional

Hadoop and the MPSR prototype. Multiple query categories
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Figure 4: Average application execution time comparison.

were submitted to either of the systems, randomly enhanced

with multiple signal attributes for value filtering. The exe-

cuted benchmarks consisted of a submission of a thousand

of MapReduce jobs and was repeated three times.

Average Query Execution Time Analysis
We started by conducting benchmarks for studying and

comparing the average query execution time of the tradi-

tional Hadoop deployments and the MPSR prototype. This

metric is absolutely critical for assessing the usefulness of

the proposed approach, since the most fundamental objective

of the MPSR is to improve the throughput of user request

processing on the same cluster configuration, while at the

same time minimize detrimental impacts on other charac-

teristics of the system. The results obtained suggest that

different application categories submitted through the work-

load simulation tool, do not differ much from the average

values, thus this representation will be used in further anal-

ysis. The benchmarking tests, depicted in Figure 4, shared

an identical variable configuration, while the variable name

and time interval filters were applied individually (which

explains the difference in observed values). The comparison

between the systems allowed to conclude that the proposed

approach was more efficient than the traditional solution in

all of the tested configurations. It was also observed that the

performance gains of the MPSR prototype were higher in

larger clusters, leading to a reduction in the average execution

time by 21 − 42% on a 10-node infrastructure, respectively

19−35% on 7-node and 15−34% on 4-node infrastructures.

As expected, a larger infrastructure allows for a faster data

processing.

Average Queue Size Analysis
As a next step, the queue behaviour for both systems was

studied (see Figure 5). Despite the fact that the average

execution time is a good measure to determine the perfor-

mance of the system, the queue size cannot be neglected, as

the request pile-up can render the infrastructure unusable

at some point and therefore severely impact the application

waiting time. The cluster configuration was identical for the

performance evaluation of the two systems and the same

arrival rate was applied. The obtained results (see Figure 5

Figure 5: Average queue size comparison.

confirm that the MPSR prototype was notably more efficient

than the standard Hadoop installation in managing the queue.

The MPSR approach was able to maintain the queue size

close to zero throughout the entire runtime of the experi-

ment, with the exception of a successive submission of a

few applications with large input size. Nevertheless, after

some time the measurements decayed back to their original

values. On the other hand, the traditional Hadoop approach

results show that the queue size started to increase from

the very beginning of the experiment. This increment was

mostly constant, with the exception of a short period during

which the infrastructure managed to recover slightly. Similar

observations were already observed in other benchmarks we

have executed.

Scalability
In a further effort of assessing the quality of the MPSR

solution for a potential use in very large-scale infrastructures

like the one currently being built at CERN, a scalability

study was conducted. While the modifications of the core

Hadoop features were kept to a minimum when integrating

the MPSR prototype, the system had inevitably to be modi-

fied, as the data storage strategy was different in comparison

to the traditional approach.

First, the average execution time metric of the applica-

tion was inspected. When compared to a traditional Hadoop

installation, the MPSR prototype was in most cases more ef-

ficient, resulting in lower processing times due to the smaller

input size (see Figure 4). However, the collected results do

not allow an extrapolation with acceptable error margins

for larger clusters, as there are many possible fit functions

which can be applied in this case. On the other hand, the

behaviour of the MPSR prototype is very similar to the orig-

inal Hadoop version. The relation between the application

input size and the corresponding execution time remains

high, thus allowing us to use the observations of other re-

searchers to perform the extrapolation to larger cluster sizes.

As part of their research, the authors of [15] conducted a

detailed analysis of the impact of the infrastructure size on

the cluster processing throughput and average execution time

of the application. According to their study, the number of

machines in the cluster has a linear correlation with respect

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA036

Data Management and Processing
THPHA036

1439

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 6: Average execution time estimation.

Figure 7: MPSR cluster throughput estimation.

to the available processing capacity. On the other hand, as

expected the processing time does not scale linearly with the

infrastructure size, since for each application with a limited

input size there is always a maximum degree of parallelism.

Despite the fact that the authors do not mention the nature

of the affinity between the last two metrics, mathematical

methods allowed us to determine that the reported values

follow an exponential decay function. Based on the obser-

vations, the estimation presented in Figure 6 was derived.

In the following, based on the facts presented in the previ-

ous paragraph, the processing rate of the cluster with the

MPSR solution was derived (see Figure 7). The observed

measurements were used as input for the linear fit function.

The average execution time and cluster throughput estima-

tions will remain valid as long as the computing resources,

the stored data structure and executed workloads remain

similar to the tested configurations. However, a behaviour

modification is inevitable in large infrastructures, like the

second-generation data storage and processing solution be-

ing built at CERN. The data and workloads are heteroge-

neous, introducing many possible factors which can impact

the provisioned behaviour. The data acquisition rates can

change, meaning that the block fill factor will be altered.

In case many devices are reporting values at much lower

rates than provisioned, the number of mappers required for

processing the same amount of data will increase, altering

the equation due to the more important share of application

staging time throughout the whole process. This issue is

known as the “small file” problem [16], which does not only

impact the memory requirements of the Namenode to repre-

sent the namespace, but also introduces significant overhead

when processing the data. Furthermore, in larger systems

it is expected that the concurrency will be higher, meaning

that the competition for the available resources will be more

significant.

CONCLUSIONS
This paper presents a multi-criterion partitioning tech-

nique which can be integrated into distributed storage and

processing solutions, like Hadoop, aiming to optimize its

performance for the execution of heterogeneous workloads.

The proposed approach - Mixed Partitioning Scheme Repli-

cation - targets to minimize the intrusions into the original

distributed analysis systems, striving to maintain most of its

scalability and failure tolerance characteristics, while at the

same time allowing the integration of other external tools

for further optimizations of the system. Based on the MPSR

data acquisition and retrieval pipeline investigation results,

the MPSR prototype, integrated into the Hadoop sources

was developed, resembling the core features of the proposed

approach.

The executed benchmarks confirm that theMPSR solution

is capable of performing better than the traditional Hadoop

infrastructure, even with the simplest partitioning criteria

configurations. The main source of performance gains is

the reduction of the job input size, achieved by selecting the

most appropriate data organization scheme for processing

the requests. Nevertheless, the drawbacks of the proposed

solution must be carefully studied in order to present the

full picture. The main source of the possible issues is the

Namenode service, which in case of MPSR requires more re-

sources to represent the namespace. Additionally, the failure

recovery process is no longer a simple data copy operation

from one node to another. Instead, a more complicated pro-

cess, which actually requires a detailed analysis of the lost

dataset is required in order to restore the measurements. The

scalability estimations suggest that the proposed approach

will continue to perform efficiently on large infrastructures,

making the MPSR a very attractive solution for the future

transient accelerator recording and analysis system devel-

oped at CERN.
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