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Abstract
The control systems of the Collider-Accelerator Depart-

ment (C-AD) at Brookhaven National Laboratory (BNL)

are complex systems consisting of approximately 1.5 mil-
lion [1] control points. Instances of C-AD control systems

are applied in the Linear Accelerator (Linac), Electron Beam

Ion Source (EBIS), Tandem Van de Graff pre-accelerators,

the Booster accelerator, Alternating Gradient Synchrotron

(AGS), and the Relativistic Heavy Ion Collider (RHIC). Its

performance has a crucial impact over the whole accelerator

suite. In this paper, we propose a new simulation framework

that can improve the robustness of the control system. It

focuses on enhancing the reliability of its software codes by

running automated testing. The architecture is described,

followed by some key use cases in the current system. More-

over, the next development phase is proposed.

INTRODUCTION
The Relativistic Heavy Ion Collider (RHIC) is a world-

class particle accelerator at BNL. It enables [2] scientists to

study what the universe may have looked like in the first few

moments after its creation. RHIC contains two 3.8 kilome-
ters counter-rotating super-conducting rings to carry particle

beams which can be collided in six crossing regions [3, 4]

to provide possible interactions for experimenters to study.

The RHIC control system provides [5–8] the operational

interface to the collider and injection beam lines. The ar-

chitecture is hierarchical and consists of two physical lay-

ers with network connections: Console Level Computers

(CLCs) level and Front-end Computers (FECs) level, as

seen in Fig. 1. The front-end level comprises more than 500

FECs, running the VxWorksTM real-time operation system.

Each FEC consists of a VME chassis with a single-board

computer, network connection, and I/O modules. The FECs

are distributed around 38 locations, including the control

center, service buildings and 18 equipment alcoves acces-

sible only via the ring tunnel. Along with [3, 4] data links

and hardware modules, they are the control systems inter-

face to physical accelerator equipment. The console level is

the upper layer of the control system hierarchy, which con-

sists of operator consoles, physicist workstations and server

processors that provide shared file, database and general

computing resources. Processes known as managers are also

found at the console level. A manager can function as a sort

of virtual FEC. Some managers perform data concentration

or processing functions. Increasingly, CLC level manager

∗ Work supported by Brookhaven Science Associates, LLC under Contract

No. DE-SC0012704 with the U.S. Department of Energy.
† ygao@bnl.gov

Figure 1: RHIC system hardware architecture.

processes bypass the FEC level and provide a direct inter-

face to accelerator equipment. CLC managers communicate

with accelerator equipment via direct network connections

or via Ethernet-to-GPIB (General Purpose Interface Bus) or

Ethernet-to-serial converters. These CLC level equipment

interface managers have been chosen as the first target for

our simulation architecture.

The software system for RHIC controls is structured

with [5–8] well-defined layers and interfaces following a

standard object-oriented design paradigm. At the front end

level, it mainly consists of two broad categories: device

drivers and Accelerator Device Objects (ADOs). Device

drivers used in RHIC FECs are very similar to device drivers

used in other applications in that they provide a standard in-

terface for software to interact with various hardware devices.

An ADO is a software object which serves as a collection

of various related accelerator control points and provides

standard methods through which higher-level applications

can interact with those parameters.

Reliable functioning of control systems is critical to the

proper operation of accelerators. In this paper, we propose

a new simulation architecture for C-AD control systems,

which will enable automated testing of controls software.

The new simulation platform analyzes ADO code and gen-

erates a corresponding test bench. Test results are shown to

users for codes analysis. Key use cases and future plans of

the simulation platform will be discussed.

PRELIMINARIES
In this section, we describe the main components of the

C-AD control systems for the new simulation framework.

Accelerator Device Object
The Accelerator Device Object (ADO) is the fundamental

construct [4, 9] in C-AD control systems. The ADO model

is a flexible way to view accelerator equipment. It was intro-
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duced during the development of the RHIC Control System

in the late 1990s.

ADOs are instances of C++ or Java classes which abstract

features from underlying controls hardware into a collection

of collider control points known as parameters, and each

parameter can possess one or more properties to better de-

scribe characteristics of devices. The number of parameters

and names of parameters are determined by ADO designers

to meet the needs of the system. The most important ADO

class methods for device control are the set() and get() meth-
ods. The set() and get() methods are processed by the ADO
that acts as the interface to device drivers to access controls

hardware. The collider is controlled by users or applications

which set() and get() the parameters in instances of these
classes using a suite of interface routines.

Since the crafting of ADOs is so crucial, special develop-

ment tools are used. The source file of an ADO is typically

stored in a file with a “.rad” extension, which stands for

RHIC ADO Definition file. A preprocessor was written to

transform “.rad” file source codes into C++. It takes care

of the necessary details and allows ADO designers to fo-

cus on the controls interfaces, which are the set() and get()
methods and event codes. One of the primary goals of the

ADO concept is to establish unified standards for controls

software development, which automates the integration of

device level controls into the overall control systems and

simplifies the coding process.

System Components and Tools

Controls Name Server The Controls Name Server

(CNS) provides [10] a centralized repository where unique

name/value pairs can be efficiently managed and queried. In

C-AD control systems, applications can get enough informa-

tion from CNS through its object’s name entries so that the

associated data can be accessed.

Notification Server The Notification Server (notif-

Server) [11–13] in C-AD control systems is a server that

receives notifications from RHIC ADOs. It then logs the

notices in a daily log and forwards them to the AGS Alarm

Receiver. The notifications can be displayed by alarm display

applications.

Logging System The C-AD control system provides a

logging service [14], which is used to save machine parame-

ters and device values to provide a history of the accelerator

performance and to provide data to be analyzed for machine

physics studies. Data collection and retrieval by the log-

ging system is carried out by the base tools [15] called the

SDDS Toolkit, developed at Argonne National Laboratory

(ANL). SDDS Data is stored in a directory tree structure.

Separate applications for displaying logged data have also

been provided.

Figure 2: Simulation architecture overview.

SIMULATION ARCHITECTURE
OVERVIEW

In this section, we describe the new proposed simulation

architecture, which is shown in Fig. 2. It focuses on running

test data to improve an ADO’s reliability. The architecture in-

cludes software modules that simulate interactions between

ADOs and hardware.

One of the fundamental goals of the simulation architec-

ture design is to enable control system developers to easily

switch between normal mode and simulation mode. In the

normal mode (lower branch in Fig. 2), an ADO is communi-

cating with real hardware. In the simulation mode, an ADO

is interacting with the simulation platform (upper branch

in Fig. 2). We call ADOs that use simulation mode “sim-

ulated ADOs”. When developers want to switch from the

normal working mode to the simulation mode, they set an en-

vironment variable to specify the directory which contains

the simulated library. Thus the simulated library will be

used at compile time instead of the real library. No changes

are made to the ADO code itself. Unset the environment

variable to go back to the normal working mode.

Simulated Bus Interface and Data Generator
The two basic blocks in the simulation structure are “sim-

Libs” and “dataGenerator”. They work collectively to carry

out the main testing procedure.

In real cases, communication between ADOs and devices

takes place over Ethernet and the particular bus interface

connecting to the hardware, such as General Purpose In-

terface Bus (GPIB, IEEE 488.2). Under simulation mode,
the “simLibs” block acts as both the Ethernet and special

bus interface, connecting ADOs to the data generator block.

It parses commands from ADOs, and responds with corre-

sponding test data, which are generated from the data gener-

ator. Practically, the simLibs block contains all the variable

and function declarations in the original GPIB header file,

and rewires the connections of the functions to customized

test data instead of real hardware.

Test data can come from three sources:
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Logged Data Logged data are history data logged using

the methods described in the previous section. Reading

logged data saves time for arranging data in the right format

for particular ADOs. By using logged data, developers can

replay a period that they are interested in, e.g. a 3-hour

simulation run of the time before a magnet failure could

help to figure out the cause.

Random Data Random data are generated for special

testing purposes based on ADO parameters’ requirements

(e.g. random integers, random doubles, random strings, etc.).

A useful case would be generating random data to cover the

entire data range of a parameter to see if the ADO codes can

handle it.

File Data File data are test data written by developers.

File data are organized with one-to-one pairs, with the first

element storing a keyword and the second element storing

the corresponding test data. During a simulation, based

on the commands received from ADOs the simLibs block

loads the test file and looks for particular keywords and fetch

the corresponding test data to interact with ADOs correctly.

Thus file test data is good for situations in which the de-

veloper has an understanding of the conditions that tend to

cause ADO failures.

To get an idea of how those two blocks can work together

to replace real device, consider the following example. Sup-

pose an ADO is querying current value of a magnet by issu-

ing a device command “ME AS : CURR?”. In the normal
working mode, upon receiving this command the underlying

device will respond with a current value. Whereas in the

simulation mode, instead of the real hardware the simLibs

block receives this command, parses and passes it to the data

generator, and returns with different responses depending on

the testing mode (log, random or file) set by the developer. In

the log mode, data response is drawn from history data of the

device. Which time period of the history to use is specified

by developers in the configuration file. In the random mode,

data response could be a random double number within a

range. The range is based on the hardware specification and

is specified by developers in the configuration file. In the

file mode, the file will contain a one-to-one pair, for exam-

ple, “current&97.98”, where “&” is the delimiter used to
separate the file keyword and the test data. In the configu-

ration file, developers need to specify another one-to-one

pair “ME AS : CURR? → current” to map1 the command
“ME AS : CURR?” to the file keyword “current”, so that
the simLibs block can find the right entry in the file and

respond with the developer-specified test data “97.98”.

Generalization of Bus Interface
One of the essential guidelines in designing the simulation

platform for ADO testing is the generalization of the testing

process. In real cases, ADOs often communicate with dif-

ferent hardware, who usually have different sets of device

1 The pairs are written in standard XML format, here is just an illustration.

commands, and use different kinds of bus interfaces. How

to accommodate various situations is a crucial step. In real

operations, hardware information is provided and processed

by the hardware itself. The bus interface does not need to

understand hardware information, and it merely provides

connections to enable communication. However, in the sim-

ulation mode, since there is no real hardware involved, a

counterpart is needed to deal with hardware information in

order to generalize the testing process.

The simulation environment makes use of a configuration

file to address this concern. The Simulated Hardware Con-

figuration File uses standard XML [16] format. It consists

of a list of information that contains all necessary informa-

tion needed to interact with a particular type of hardware.

It is also easily maintained by appending or removing the

corresponding information sets. Once simulation begins,

the “simLibs” module loads the configuration file and then

is aware of all the hardware going to be used in this simu-

lation. Therefore it understands how to respond to various

commands it receives from ADOs.

We supply a Java GUI to assist in the creation of the Sim-

ulated Hardware Configuration File. There are several levels

in the structure of the configuration file. The top level lists

all ADO classes representing different types of devices that

are going to be simulated. Inside each device section, there

are several parts describing the simulation parameters. The

first part is the initialization part, which initializes the GPIB

parameters, including indicator of whether the device is con-

nected to the network, whether the device is turned on, and

whether developers want to print out debug information, etc.

The following parts are the testing mode parts (default mode,

log mode, random mode, file mode) describing the parame-

ters used in each testing mode2. Those parts share a common

feature that they all consist of a group of basic blocks, each of

them is a one-to-one pair mapping from a device command

to the corresponding response information. Depending on

the testing mode, response information varies. For exam-

ple, if the ADO issues a “ME AS : CURR?” command
to get the current value of a magnet. In the log mode, re-

sponse information is mainly related to the instructions about

how to find the logged data in a log file. The configuration

file could contain entry “y6 − q89 − master : currentM”,

where “y6 − q89 − master” is a system-wide generic name
used by CNS to locate the device from which the ADO is

querying information, and “currentM” is the device param-

eter which holds the magnet’s current value. Another entry

“Number; 0; 0” to indicate the parameter value is a numer-
ical type, and the remaining part “0; 0” are the indexes to

determine the position in the log file to fetch data. Every time

the simLibs gets a data point, it increases the index so that

the history data can be replayed in real time. In the random

mode, response information is about how to generate ran-

dom data (e.g. random array data, random integers, random

strings, etc.). An example entry could be “90.12 100.23” to

2 If the developer does not specify testing mode, default mode will be used,

in which case all hardware responses in the simulation are predefined

constant values.
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indicate that the return data is generated randomly uniformly

between 90.12 and 100.23. Whereas in the file mode, re-

sponse information is a keyword which will be used to find

the actual response data in a testing file, which is written by

the developer before the simulation starts. An entry3 in the

configuration file could be “ME AS : CURR? → current”,
where “current” is the file keyword used by the simLibs
to get the corresponding data in the test file. Moreover, in

the log mode part, developers also need to specify the time

period of the history from which the log data is drawn, and

the directory of the log file.

Time Delay Module
To better simulate real world communication scenarios, a

time delay module is added between the simulated library

and ADOs. The default case is no delay, i.e. an ADO gets

responses immediately after commands are issued. How-

ever, a developer can require a delay added in the following

way. First, the developer specifies 3 environment variables

to indicate the values of a probability p, a potential delay
value d and a binary f lag. For example, p = 0.5, d = 10,
then after the simulation starts, the communication between

ADO and the simulated library will experience delay with

probability 0.5, otherwise there is no delay. Specifically,
the simLibs block first generates a random decimal number,

if that number is smaller than 0.5, then the simLibs block
adds a time delay before it responds to any command from

the ADO. Depending on the f lag value, the actual delay
value added will be generated uniformly randomly between

0 and 10 seconds if f lag = 1, or the 10 seconds will be used
directly if f lag = 0. Moreover, based on the actual delay
experienced, timeout errors handling is also implemented

in the simLibs block. Hence whenever the ADO waits for

a response longer than a predefined timeout value after it

sends out the command, the simLibs block will issue a time-

out error and set the corresponding error bits to indicate the

status.

Tester
The block on the top of Fig. 2 is used to automatically

generate test files for the file testing mode as mentioned

above. “Tester” goes through ADO codes, and finds out

information about parameters in the ADOs, such as number

of parameters and type of parameters. Next, according to

that information and the developer-specified Tester running

mode, it generates test data and stores it in text files. One

text file is created for each ADO class. Those text files are

used as input test files when simulation begins.

In order to run the Tester block, there are two Tester config-

uration files developers need to create. The first file lists all

ADO classes developers want to test in the simulation. Each

class starts with a “#” as the delimiter. Following each ADO

class, developers need to specify how to run the “Tester” to

generate the testing files. Available Tester running modes are

“M AX” or “MIN”, which stands for giving parameters of

3 See 1.

the ADO values that are larger than the maximum threshold

or smaller than the minimum threshold based on the ADO

specifications. The second file consists of a group of one-

to-one pairs, with the first element of each pair listing the

parameter name of the ADO and the second element being a

keyword to be used later to write a test file. For example, if

the developer wants to test the parameters of an ADO named

“bopglPS” by crashing the parameters’ upper limits, then

the first file should contain entries “#bopglPS” followed
in the second line “bopglPS&Mode&M AX”. The sec-

ond file lists pairs, for example, “currentM&current” and
“voltageM&voltage”, where “currentM” and “voltageM”

are the parameters “bopglPS” uses to monitor the current
and voltage values of a magnet, “current” and “voltage”
are file keywords. After the Tester block starts, it loads in

the first file to find ADO class names, then connects to the

database using the class names (“bopglPS” in this case) to
locate the ADOs and get all of their parameter (“currentM”

and “voltageM” in this case) information (number, type,

engineering limits, etc. as mentioned above). Next, based

on the Tester running mode (“M AX” in this case) the Tester
randomly generates test data4, and writes the data into a test

file using the keywords (“current” and “voltage” in this
case) listed in the second file. In this example, the test file

generated will contain entries “current&a big number” and
“voltage&another big number”. Later this file will be used
as test data source to verify if ADO codes can handle those

cases.

Testing Procedure
Before the simulation starts, the first thing to do is to

set up environment variables, which includes setting the

running mode as simulation mode (instead of using the real

hardware), specifying testing mode (can be random mode,

log mode, file mode, or default mode5 if left unset), the

directory to load the configuration file, and the time delay

parameters (p, d and f lag).
The next step is to create the Simulated Hardware Con-

figuration File. As mentioned above, the configuration file

is written in standard XML format and contains device in-

formation for the simLibs block to interact with the ADOs.

The file is created by a Java GUI, in which developers are

asked to specify a location to save the file6.

After the Simulated Hardware Configuration File is cre-

ated, developers can start the simulation and switch testing

modes during run time by changing the value of the environ-

ment variable to “LOG”, “RANDOM” or “FILE”.
The simulation results are the values that are published in

the parameters of the simulated ADO. They can be viewed

or logged using standard control system tools. Depending

on the results, users can verify the functionality of ADO

4 For the “MAX” mode, test data are in the range of (10 − 100)× the

maximum threshold; For the “MIN” mode, test data are in the range of
(10 − 100)× (the minimum threshold −1).

5 See 2.
6 This directory should be consistent with the directory specified by the

setup environment variable.
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codes. Future versions of the simulation architecture may in-

clude specialized mechanisms for capturing and comparing

simulation results.

Key Use Cases
The simulation platform is envisioned as a system inwhich

several simulation modules can be implemented, and that

can support input and output interfaces for programming the

simulation and interpreting results. The principal goal is to

help testing and developing software in the C-AD control

systems.

One of the purposes of simulation mode is to improve

robustness of ADO codes by running through test data to

improve software dependability. Some general testing guide-

lines can be followed. For parameters of numerical type,

stress tests can be imposed, such as violating range bound-

aries or iterating every valid value for a given type of nu-

merical parameter. For string type parameters, stress tests

can be assignment with strings of huge size or zero size.

For both types, tests of assigning inconsistent types of data

can be performed. Some other special test scenarios are

summarized as follows.

After upgrade of software, simulation mode helps devel-

opers to verify whether the new version of software works in

a desired way by the following testing scheme. Simulation

is performed with old logged input data, and new output

is compared with old logged output data. Conclusions can

be drawn based on whether the two outputs differ in an ex-

pected way. There are use cases where the aim is to make

sure ADOs are ready to connect with some specific hard-

ware when the hardware is not available, either because new

hardware has not been deployed in the system or they are in

a maintenance stage and cannot be accessed within a certain

time. Test cases where control parameterization method is

expected are also applicable, where only a part of parameters

are of interests. In such situations, parameters of interest are

varied in a random or controlled fashion while the rest are

applied with fixed test data.

FUTURE WORK
Our focus thus far has been on defining the overall struc-

ture of a useful control system simulation environment. The

system we have described does that within the framework

of the existing, real control system. One future goal is to

construct a version of the system that can be completely self-

contained. This would allow working in an environment in

which all aspects of the system might be controlled, with-

out impact on the actual running control system. Another

goal is to make the simulations more realistic. To do this

means more work must focus on the hardware interfaces

and developing modules that mimic the actual hardware.

The system is also not really ready for general release to

developers. The user interface remains primitive and more

automated analysis needs to be added. One incomplete piece

is the construction of a special client that monitors both the

inputs to an ADO and the output. We imagine this special

client to become the main user interface developers could

use to construct and perform testing suites and even develop

regression testing groups.

CONCLUSIONS
In this paper, we present a way to assist in developing

and testing software in the C-AD control systems. A new

simulation architecture is proposed which mainly aims to

improve ADO codes reliability. Key use cases of the testing

platform are listed and analyzed. The next development

stage is described.
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