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Abstract
The CERN Control and Monitoring Platform (C2MON) 

[1] is an open-source platform for industrial controls data 
acquisition,  monitoring,  control  and  data  publishing. 
C2MON's high-availability,  redundant  capabilities  make 
it particularly suited for a large, geographically scattered 
context such as CERN. The C2MON platform relies on 
the Java technology stack at all levels of its architecture, 
and  previously  imposed  the  deployment  of  binary 
archives that needed to be unpacked and executed locally. 
Since end of 2016, CERN offers a platform as a service 
(PaaS) offering based on RedHat Openshift  [2]. Initially 
envisioned  at  CERN  for  web  application  hosting, 
Openshift can be leveraged to host any software stack due 
to  its  adoption  of  the  Docker  container  technology, 
including  the  Java  dependency  stack  that  C2MON  is 
based upon. In order to make C2MON more scalable and 
compatible with Cloud Computing [3], it was necessary to 
containerize C2MON  components  for  the  Docker 
container platform. Containerization is a logical process 
that  forces  one  to  rethink  a  distributed  architecture  in 
terms  of  decoupled  micro-services  and  clearly  identify 
dependencies in terms of services, storage requirements, 
configuration  and  connectivity,  without  ever  imposing 
any  physical  considerations,  which  would  in  any  case 
jeopardize  the  redeployment  of  the  distributed 
architecture in another cloud environment. In return, the 
deployment of the said distributed architecture becomes 
reproducible and entirely automatable.

This  paper  explains  the  challenges  met  and  the 
principles  behind  containerizing  a  server-centric  Java 
application, demonstrating how simple it has now become 
to  deploy  C2MON  in  any  cloud-centric  environment 
(ranging from Openstack Magnum to Docker Swarm, and 
of course Openshift).

C2MON USAGES AT CERN

C2MON [1]  is  a  monitoring  platform  developed  at 
CERN and since 2016 made available under an LGPL3 
open source  license.  C2MON employs Java messaging, 
caching  and  clustering  technologies  to  deliver  robust, 
scalable  and  monitoring  of  data  of  any  kind,  with  a 
particular focus on industrial control systems.

C2MON  is  at  the  heart  of  the  CERN  Technical 
Infrastructure  Monitoring  (TIM)  that  supervises  the 
correct  functioning  of  CERN's  technical  and  safety 
infrastructure. TIM handles about three million messages 
per day.

C2MON  is  also  used  by  DIAMON2  [4],  CERN's 
accelerator  infrastructure  to monitor a large  majority of 
the equipments that compose it, ranging from servers to 
consoles,  through  front-end  computers  and  PLCs. 

DIAMON2  handles  an  average  of  twenty  million 
messages per day.

ADAPTING FOR THE CLOUD

 Over the past  couple of years,  CERN has embraced 
cloud  technology  by  replacing  the  majority  of  its 
computing infrastructure by Openstack at  a record pace 
[3]. Cloud technology presents significant advantages for 
large organizations by allowing a more precise and more 
agile  sharing of available resources.  It  promotes  device 
and location independence by forcing users to design their 

software  architectures  in  terms  of  remote  resources.  It 
also simplifies reusing and duplication of entire groups of 
machines for testing and validation purposes. Last but not 
least,  cloud  deployments  introduce  support  for  load 
balancing, circuit breaking and rolling updates in a near-
transparent  manner,  which  prior  to  this  would  have 

required  the  usage  of  proprietary,  complex  and 
technology-specific solutions.

Cloud  technology  is  perfectly  suitable  for  deploying 
pre-cloud era legacy applications thanks to virtualization 
technology.  Legacy  applications  that  rely  on  low-level 
operating  system  devices  (such  as  storage  or  network 
adapters) can easily be relocated on a cloud and thus gain 
a  new  home  away  from  any  cumbersome  hardware 
constraints.

However,  with regards to this last point, a number of 
aspects need to be carefully considered in order to benefit 
more completely of a cloud infrastructure :

· Usage of storage, process and network resources.

· Support for failures, low availability, health metrics.

· Support for clustering and configuration injection.

Usage of Storage, Process and Network 
Resources

Typical pre-cloud era applications expect a file system 
to  be  available  along  with  one  or  more  local  network 
connections. Cloud-based deployment can certainly fulfil 
such  expectations,  but  for  scalability  and  relocation's 
sake, file systems are usually transient (i.e. they are reset 
upon restart) and network interfaces typically allocated on 
the fly with a randomly-generated hardware address and 
attached to a local private, non-routable network.

Likewise, the life cycle of a cloud container hosting an 
application  is  linked  directly  to  its  main  process  ;  this 
means  that  a  web application  server  process  that  stops 
will  immediately terminate its  hosting container  and be 
signalled to the cloud infrastructure as inactive, ready to 
be  removed.  This  is  an  essential  feature  of  a  cloud 
infrastructure  which  allows  for  unused  resources  to  be 
garbage-collected and reallocated immediately. Processes 
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must therefore  be managed not at  the level  of the host 
they are running on, but at the level of the hosting cloud : 
They  must  log  their  activity  in  a  central  location  (any 
local  activity  logs written prior  to the process  stopping 
will  be  immediately  lost)  and  must  be  able  to  clearly 
indicate  their  current  status  and  general  health  through 
easily reachable metrics.

As such, pre-cloud era applications do not support the 
aforementioned features. Thankfully, numerous tools such 
as  logstash  [5] or  telegraf  [6] exist  to  perform  log 
forwarding  and  health  metrics  publication  in  a  non-
intrusive manner and can be easily injected into container 
images to extract health metrics from legacy applications .

Support for Failures and Resource Scarcity 
Conditions

Cloud  environments  aim  to  make  the  best  usage  of 
resources; commercial clouds indeed charge their users by 
the thousandth of  CPU unit  and  per  byte  of  RAM per 
second.  After  decades  of  Moore's  law  and  multi-core 
servers,  computing infrastructure  users  must once again 
think  carefully  about  their  resource  usage.  Another 
important aspect is the inherent lack of robustness - cloud 
machines are based on commodity hardware with a high 
failure rate. It is therefore essential for any application to 
expose its own load and health metrics, so that the hosting 
cloud can intelligently adjust the effort requested from a 
given running process.

Support for Clustering and Configuration 
Injection

Deployments in a cloud are by definition approximative 
and elastic. To benefit fully from such a dynamic runtime 
environment, application processes should :

· accept  to run in  any location inside the cloud that 

satisfy its working conditions.
· be able to self-configure according to existing meta-

data  that  is  injected  in  their  environment  by  the 
hosting cloud. 

By accepting to run in any location, cloud deployments 
are more effective if they only specify "soft preferences" 
over  "hard  constraints".  For  instance,  an  application 
server node can deploy as part of a cluster by either :

· expressing the preference that it wants to run as close 

as possible to the database server nodes backing it.
· mandating the constraint that it must run on the same 

node as a database server (to avoid network latency 
for instance).

In the former, the hosting cloud will be more resilient, 
as it  can relocate or re-instantiate the application server 
node anywhere within reach of the backing database with 
more  flexibility,  giving  the  service  a  better  chance  of 
remaining  in  nominal  condition.  In  the  latter,  the 
application server  node may have to wait  until  suitable 
resources on a database hosting node become available.

Adapting an existing application for the cloud requires 
the  adoption  of  new  habits  with  regards  to  resources, 
monitoring  and  configuration.  While  these  points  are 

nothing fundamentally  new in the world  of  computing, 
these  points  have  become  a  necessity  in  a  cloud,  and 
environments such as Red Hat Openshift [2] will not be 
able to deploy the application at all.

Once  such  considerations  have  been  addressed,  the 
application  components  must  be  "containerized"  to  be 
sent to the cloud. Containerization is a systematic process 
that can be both frustrating and rewarding, as it forces a 
software  developer  to  inspect  and  sanitize  entirely  the 
technology stack he or she can easily take for granted. It 
always starts from identifying the most minimal operating 
system and set of dependencies generic enough to operate 
the application then refines the image in terms of software 
artefact  injection,  configuration  support,  user  privileges 
and possible dependency on other containers.

CONTAINERIZATION PROCESS

Cloud containers are wrappers around a single process, 
allowing said process to benefit from the operating system 
services  it  expects  to find (e.g.  access  to a file system, 
access  to  network  handles,  access  to  low-level  system 
libraries ).

In  order  to  containerize  an  existing  application,  the 
following steps are necessary :

· Identify a minimal base image.

· Inject software artefacts via a delivery pipeline.

· Add support for external configuration.

· Review minimal required user privileges.

Identify a Minimal Base Image

Cloud containers are essentially "a computer inside a 
computer".  However  the  container  does  not  need  to 
replicate all functions and services of a computer - first 
off,  it  can perfectly  forego the presence of unnecessary 
devices and services; second, it can piggyback on the host 
computer's  essential  features  such as  its  kernel,  process 
management and, if needed by the application it executes, 
even hardware devices.  It is therefore recommended for 
the container to run off a base container image, exhibiting 
only  minimal  functions.  As  container  technology 
emerged, dedicated operating system distribution such as 
Alpine Linux can fit in a few megabytes what is needed to 
execute a process. Naturally, these minimal base images 
need to be enriched with the required software artefacts, 
as  very few modern applications are developed without 
relying on a large number of software dependencies.

Inject Software Artefacts via a Delivery Pipeline

The application's compiled code (typically  executable 
files)  needs  to  be  injected  inside  the  container  image. 
Build  systems  such  as  Apache  Maven  or  Openshift 
S2I [7]  already support the creation of a container image 
and injection of build artefacts directly into the image, as 
well as the deployment of the container to the cloud. Such 
a  sequence  is  typically  referred  to  as  "a  delivery 
pipeline" [8], whereby the source code of an application 
can be automatically delivered to a runtime environment 
without interruption of service via rolling upgrades.
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Add Support for External Configuration

At runtime, the application needs to obtain information 
to adapt its behaviour. For instance, it might want to know 
if it  is a test or production instance,  where it  can store 
persistent data etc... Applications such as C2MON expect 
environment variables and Java system properties, along 
with  well-defined  files  to  be  provided  upon  start-up. 
Container technology solves these problems by injecting 
file  system  mount  points  (typically  referred  to  as 
"volumes")  and  environment  variables.  Modern  cloud-
centric  applications  prefer  distributed  key-value  stores 
such  as  ZooKeeper [9]  over  configuration  files  and 
environment variables - this allows a centrally managed 
approach  with  support  for  versioning.  Spring  Cloud 
Configuration [10] is also a very compelling solution for 
applications written with the Spring Framework such as 
C2MON,  it  integrates  transparently  with  source 
versioning systems such as Subversion or Git, making it 
very  simple  to  deploy  and  with  a  lower  cost  of 
maintenance than ZooKeeper, and still allows to upgrade 
to a ZooKeeper backend should the situation require it.

Review Minimal Required User Privileges

Containers  in  a  cloud  environment  must  be  isolated 
from each other as much as possible to ensure they are 
easily replaceable and that they do not impact any other 
third-party  applications  that  could  be  co-located  in  the 
same  cloud.  Container  technology  places  a  strong 
emphasis on security  and stopping "container  escape" - 
the  possibility  for  a  container  application  to  escape  its 
boundaries  and interact  with the host  operating system, 
allowing  an  attacker  to  gain  control  of  the  cloud 
infrastructure the application is running on. The first line 
of  defence  against  container  escapes  is  to  ensure  the 
container  runtime  user  has  no  privileges  on  its  host 
system. One popular strategy for cloud implementations is 
to assign containers a random user identifier, ensuring the 

container runtime is unprivileged. It is rather unusual for 
traditional  applications  to  operate  that  way,  and  steps 
must be taken to grant enough privileges upon start-up to 
this randomly assigned user [11].

Specify Dependencies on Other Containers or 
Non-Cloud Based Resources

Applications in an enterprise-type environment such as 
CERN  rarely  operate  by  themselves  :  they  depend  on 
existing services and resources available on a large scale 
(for  instance  naming  directories,  enterprise  database 
servers).  Since  containers  aim  to  run  a  single  process 
inside each instance, it is preferable to deploy one type of 
container  per  architecture  element  present  in  the 
application (e.g. application server, web front-end server, 
message  broker).  As  stated  earlier,  containers  cannot 
make  any  assumptions  about  the  location  of  other 
containers  they  depend  on.  The  hosting  cloud 
environment  is  the  one  in  charge  of  orchestrating 
deployment  and only it  knows where  each  container  is 
actually located. As a result, cloud hosting platforms tend 
to  group  distinct  types  of  containers  into  services. 
Services  declare  a  known  ingress  point,  from  which 
requests  are  then  dispatched  to  individual  containers 
fulfilling the same function [12]. This allows containers to 
be  added,  destroyed  or  upgraded  without  any  loss  of 
service,  and dependent  containers  always  know how to 
obtain service. Furthermore, if the service implementation 
is stateless or capable of clustering, such an indirection 
can  transparently  support  load-balancing  and  circuit 
breaking which further contributes to the robustness of the 
overall application.

Access  to  non-cloud  based  resources  also  relies  on 
service definitions (typically through a known network 
address). In that case however, advanced features such as 
load-balancing or health monitoring cannot be provided 
by the cloud itself.
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Figure 1: C2MON general architecture.

C2MON TECHNOLOGY STACK

Using C2MON and the CERN cloud infrastructure as a 
case  study,  let  us  consider  each  of  its  constituting 
elements  before  evaluating  how  suitable  they  are  for 
cloud deployment.

Figure 1 presents the general C2MON architecture.

The  C2MON  architecture  relies  on  the  following 
majors components :

· ActiveMQ Message Brokers

· Clustered caching

· DAQ processes

· Configuration persistence and archiving

· Client interfaces

ActiveMQ Message Brokers

ActiveMQ is a message broker software. C2MON uses 
ActiveMQ brokers for all its message exchanges (with the 
exception of web broadcasting, which relies on the cloud-
enabled Atmosphere  framework).  ActiveMQ is  a  robust 
and  widely used  messaging  service.  Its  implementation 
however is synchronous, by opposition to asynchronous 
messaging facilities such as Apache Kafka  [13], thereby 
limiting its general  performance.  The ActiveMQ project 
was  introduced  in  2001  and  its  architecture  is  not 
currently  a  natural  fit  for  a  cloud  deployment  in  the 
CERN  cloud  environment  :  It  only  supports  cluster 
member  auto-discovery  via  multicast,  which  is  not 
allowed  in  the  CERN  Openshift  infrastructure,  and  its 
configuration relies on file system resources and system 

properties, which as explained in section "Add support for 
external  configuration",  reduces  its  scalability 
opportunities.

Another  important  limitation  of  ActiveMQ  is  that  it 
relies  primarily  on  TCP communications  through  well-
known  ports,  which  are  inapplicable  in  a  cloud 
environment, where hostnames and ports cannot be relied 
upon. ActiveMQ supports other transport protocols such 
as  HTTP,  but  tests  proved  that  this  implementation  is 
incompatible  with  high-availability  proxies  such  as 
HAProxy  -  as  long  running  DAQ  sessions  eventually 
cause HAProxy to run out of memory.

Clustered Caching

C2MON uses EhCache and Terracotta to maximize its 
availability  and  performance.  Similarly  to  ActiveMQ, 
Terracotta  does  not  support  cluster  auto-discovery  -  it 
relies on hostnames or IP addresses, both inapplicable in a 
cloud environment. Redundant terracotta can however be 
deployed by declaring one cloud service per server, with 
the obvious consequence that such a setup would have to 
be scaled up manually.

DAQ Processes

DAQ processes  are  configured via property files  and 
environment variables.  They do not support redundancy 
or clustering, deploying them in a swarm would therefore 
bring no benefit.
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Figure 2: C2MON deployment over the CERN cloud infrastructure.

Configuration Persistence and Archiving

C2MON can archive data to ElasticSearch or an Oracle 
or  MySQL  database.  It  also  persists  its  runtime 
configuration  to  a  relation  database  such  as  Oracle  or 
MySQL.  CERN  already  provides  a  high-availability 
ElasticSearch  cluster  service,  as  well  as  a  database  on 
demand service that supports MySQL and Oracle. In the 
case of an environment were neither would be provided, 
new high-availability  database  implementations  such  as 
CockroachDB that is fully compatible with PostgresDB is 
an ideal candidate to move relational databases to a cloud 
environment.  In  our case,  this  option was  not  explored 
due to lack of resources.

Client Interfaces

C2MON  can  expose  its  data  to  users  through  two 
mechanisms :

· the Web UI, which is an administrative interface to 

C2MON internals.  Not destined for  end-users,  it  is 
an  essential  tool  to  monitor  a  C2MON  cluster.  It 
relies on a stateless application server, requires little 
to no configuration (since it merely reflects the one 
contained  in  its  C2MON  cluster)  and  is  an  ideal 
candidate for cloud deployment.

· the  WebSocket  client  extension  which  provides 

scalable  streaming  support  for  end-user  web 
interfaces. Based on the Atmosphere framework and 
compatible with numerous clustering back-ends, it is 
also ideal for cloud deployment.

Now that we have reviewed each architectural element, 
we can review our actual  implementation in the CERN 
environment.

CLOUD MIGRATION RESULTS

Figure 2 presents the final C2MON cloud deployment 
as  performed  over  the  CERN cloud infrastructure.  The 
CERN cloud offers, amongst others, two implementations 
particularly suited for C2MON deployments : Openshift 
and Openstack Magnum [14].

Openshift, as implemented at CERN, is aimed at web 
hosting. All  incoming traffic  is  handled by HAProxy,  a 
high-availability  load  balancer  that  also  prevents  other 
types of trafic. As explained in the “ActiveMQ Message 
Brokers”  section,  the  ActiveMQ HTTP transport  is  ill-
suited for long-running sessions and causes HAProxy to 
run out of memory.

The Openstack Magnum hosting infrastructure on the 
other hand supports general purpose cloud hosting via the 
Docker swarm [14] technology, which allows TCP traffic 
and well-known ports and services, making it possible to 
deploy  C2MON  server  instances,  albeit  without  any 
support for high-availability and load balancing.

Other  elements  such  as  the  C2MON  Atmosphere 
service or the C2MON Web UI service are ideally suited 
for Openshift, supporting rolling upgrades and automated 
deployments out of the box.

Migrating existing applications to make the best out of 
a  cloud  environment,  if  not  effortless,  is  nevertheless 
possible with the help of a suitable build and deployment 
infrastructure, and provided enough attention is brought to 
deployment specificities,  security requirements and load 
balancing constraints imposed by the hosting cloud.
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