
C2MON SCADA DEPLOYMENT ON CERN CLOUD INFRASTRUCTURE

B. Copy, M. Braeger, E. Mandilara, F. Ehm, A. Lossent
CERN, Geneva, Switzerland

Abstract
The CERN Control and Monitoring Platform (C2MON)

[1] is an open-source platform for industrial controls data
acquisition, monitoring, control and data publishing.
C2MON's high-availability, redundant capabilities make
it particularly suited for a large, geographically scattered
context such as CERN. The C2MON platform relies on
the Java technology stack at all levels of its architecture,
and previously imposed the deployment of binary
archives that needed to be unpacked and executed locally.
Since end of 2016, CERN offers a platform as a service
(PaaS) offering based on RedHat Openshift [2]. Initially
envisioned at CERN for web application hosting,
Openshift can be leveraged to host any software stack due
to its adoption of the Docker container technology,
including the Java dependency stack that C2MON is
based upon. In order to make C2MON more scalable and
compatible with Cloud Computing [3], it was necessary to
containerize C2MON components for the Docker
container platform. Containerization is a logical process
that forces one to rethink a distributed architecture in
terms of decoupled micro-services and clearly identify
dependencies in terms of services, storage requirements,
configuration and connectivity, without ever imposing
any physical considerations, which would in any case
jeopardize the redeployment of the distributed
architecture in another cloud environment. In return, the
deployment of the said distributed architecture becomes
reproducible and entirely automatable.

This paper explains the challenges met and the
principles behind containerizing a server-centric Java
application, demonstrating how simple it has now become
to deploy C2MON in any cloud-centric environment
(ranging from Openstack Magnum to Docker Swarm, and
of course Openshift).

C2MON USAGES AT CERN

C2MON [1] is a monitoring platform developed at
CERN and since 2016 made available under an LGPL3
open source license. C2MON employs Java messaging,
caching and clustering technologies to deliver robust,
scalable and monitoring of data of any kind, with a
particular focus on industrial control systems.

C2MON is at the heart of the CERN Technical
Infrastructure Monitoring (TIM) that supervises the
correct functioning of CERN's technical and safety
infrastructure. TIM handles about three million messages
per day.

C2MON is also used by DIAMON2 [4], CERN's
accelerator infrastructure to monitor a large majority of
the equipments that compose it, ranging from servers to
consoles, through front-end computers and PLCs.

DIAMON2 handles an average of twenty million
messages per day.

ADAPTING FOR THE CLOUD

 Over the past couple of years, CERN has embraced
cloud technology by replacing the majority of its
computing infrastructure by Openstack at a record pace
[3]. Cloud technology presents significant advantages for
large organizations by allowing a more precise and more
agile sharing of available resources. It promotes device
and location independence by forcing users to design their

software architectures in terms of remote resources. It
also simplifies reusing and duplication of entire groups of
machines for testing and validation purposes. Last but not
least, cloud deployments introduce support for load
balancing, circuit breaking and rolling updates in a near-
transparent manner, which prior to this would have

required the usage of proprietary, complex and
technology-specific solutions.

Cloud technology is perfectly suitable for deploying
pre-cloud era legacy applications thanks to virtualization
technology. Legacy applications that rely on low-level
operating system devices (such as storage or network
adapters) can easily be relocated on a cloud and thus gain
a new home away from any cumbersome hardware
constraints.

However, with regards to this last point, a number of
aspects need to be carefully considered in order to benefit
more completely of a cloud infrastructure :

· Usage of storage, process and network resources.

· Support for failures, low availability, health metrics.

· Support for clustering and configuration injection.

Usage of Storage, Process and Network
Resources

Typical pre-cloud era applications expect a file system
to be available along with one or more local network
connections. Cloud-based deployment can certainly fulfil
such expectations, but for scalability and relocation's
sake, file systems are usually transient (i.e. they are reset
upon restart) and network interfaces typically allocated on
the fly with a randomly-generated hardware address and
attached to a local private, non-routable network.

Likewise, the life cycle of a cloud container hosting an
application is linked directly to its main process ; this
means that a web application server process that stops
will immediately terminate its hosting container and be
signalled to the cloud infrastructure as inactive, ready to
be removed. This is an essential feature of a cloud
infrastructure which allows for unused resources to be
garbage-collected and reallocated immediately. Processes

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL01

Software Technology Evolution
THBPL01

1103

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

must therefore be managed not at the level of the host
they are running on, but at the level of the hosting cloud :
They must log their activity in a central location (any
local activity logs written prior to the process stopping
will be immediately lost) and must be able to clearly
indicate their current status and general health through
easily reachable metrics.

As such, pre-cloud era applications do not support the
aforementioned features. Thankfully, numerous tools such
as logstash [5] or telegraf [6] exist to perform log
forwarding and health metrics publication in a non-
intrusive manner and can be easily injected into container
images to extract health metrics from legacy applications .

Support for Failures and Resource Scarcity
Conditions

Cloud environments aim to make the best usage of
resources; commercial clouds indeed charge their users by
the thousandth of CPU unit and per byte of RAM per
second. After decades of Moore's law and multi-core
servers, computing infrastructure users must once again
think carefully about their resource usage. Another
important aspect is the inherent lack of robustness - cloud
machines are based on commodity hardware with a high
failure rate. It is therefore essential for any application to
expose its own load and health metrics, so that the hosting
cloud can intelligently adjust the effort requested from a
given running process.

Support for Clustering and Configuration
Injection

Deployments in a cloud are by definition approximative
and elastic. To benefit fully from such a dynamic runtime
environment, application processes should :

· accept to run in any location inside the cloud that

satisfy its working conditions.
· be able to self-configure according to existing meta-

data that is injected in their environment by the
hosting cloud.

By accepting to run in any location, cloud deployments
are more effective if they only specify "soft preferences"
over "hard constraints". For instance, an application
server node can deploy as part of a cluster by either :

· expressing the preference that it wants to run as close

as possible to the database server nodes backing it.
· mandating the constraint that it must run on the same

node as a database server (to avoid network latency
for instance).

In the former, the hosting cloud will be more resilient,
as it can relocate or re-instantiate the application server
node anywhere within reach of the backing database with
more flexibility, giving the service a better chance of
remaining in nominal condition. In the latter, the
application server node may have to wait until suitable
resources on a database hosting node become available.

Adapting an existing application for the cloud requires
the adoption of new habits with regards to resources,
monitoring and configuration. While these points are

nothing fundamentally new in the world of computing,
these points have become a necessity in a cloud, and
environments such as Red Hat Openshift [2] will not be
able to deploy the application at all.

Once such considerations have been addressed, the
application components must be "containerized" to be
sent to the cloud. Containerization is a systematic process
that can be both frustrating and rewarding, as it forces a
software developer to inspect and sanitize entirely the
technology stack he or she can easily take for granted. It
always starts from identifying the most minimal operating
system and set of dependencies generic enough to operate
the application then refines the image in terms of software
artefact injection, configuration support, user privileges
and possible dependency on other containers.

CONTAINERIZATION PROCESS

Cloud containers are wrappers around a single process,
allowing said process to benefit from the operating system
services it expects to find (e.g. access to a file system,
access to network handles, access to low-level system
libraries).

In order to containerize an existing application, the
following steps are necessary :

· Identify a minimal base image.

· Inject software artefacts via a delivery pipeline.

· Add support for external configuration.

· Review minimal required user privileges.

Identify a Minimal Base Image

Cloud containers are essentially "a computer inside a
computer". However the container does not need to
replicate all functions and services of a computer - first
off, it can perfectly forego the presence of unnecessary
devices and services; second, it can piggyback on the host
computer's essential features such as its kernel, process
management and, if needed by the application it executes,
even hardware devices. It is therefore recommended for
the container to run off a base container image, exhibiting
only minimal functions. As container technology
emerged, dedicated operating system distribution such as
Alpine Linux can fit in a few megabytes what is needed to
execute a process. Naturally, these minimal base images
need to be enriched with the required software artefacts,
as very few modern applications are developed without
relying on a large number of software dependencies.

Inject Software Artefacts via a Delivery Pipeline

The application's compiled code (typically executable
files) needs to be injected inside the container image.
Build systems such as Apache Maven or Openshift
S2I [7] already support the creation of a container image
and injection of build artefacts directly into the image, as
well as the deployment of the container to the cloud. Such
a sequence is typically referred to as "a delivery
pipeline" [8], whereby the source code of an application
can be automatically delivered to a runtime environment
without interruption of service via rolling upgrades.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL01

THBPL01
1104

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Add Support for External Configuration

At runtime, the application needs to obtain information
to adapt its behaviour. For instance, it might want to know
if it is a test or production instance, where it can store
persistent data etc... Applications such as C2MON expect
environment variables and Java system properties, along
with well-defined files to be provided upon start-up.
Container technology solves these problems by injecting
file system mount points (typically referred to as
"volumes") and environment variables. Modern cloud-
centric applications prefer distributed key-value stores
such as ZooKeeper [9] over configuration files and
environment variables - this allows a centrally managed
approach with support for versioning. Spring Cloud
Configuration [10] is also a very compelling solution for
applications written with the Spring Framework such as
C2MON, it integrates transparently with source
versioning systems such as Subversion or Git, making it
very simple to deploy and with a lower cost of
maintenance than ZooKeeper, and still allows to upgrade
to a ZooKeeper backend should the situation require it.

Review Minimal Required User Privileges

Containers in a cloud environment must be isolated
from each other as much as possible to ensure they are
easily replaceable and that they do not impact any other
third-party applications that could be co-located in the
same cloud. Container technology places a strong
emphasis on security and stopping "container escape" -
the possibility for a container application to escape its
boundaries and interact with the host operating system,
allowing an attacker to gain control of the cloud
infrastructure the application is running on. The first line
of defence against container escapes is to ensure the
container runtime user has no privileges on its host
system. One popular strategy for cloud implementations is
to assign containers a random user identifier, ensuring the

container runtime is unprivileged. It is rather unusual for
traditional applications to operate that way, and steps
must be taken to grant enough privileges upon start-up to
this randomly assigned user [11].

Specify Dependencies on Other Containers or
Non-Cloud Based Resources

Applications in an enterprise-type environment such as
CERN rarely operate by themselves : they depend on
existing services and resources available on a large scale
(for instance naming directories, enterprise database
servers). Since containers aim to run a single process
inside each instance, it is preferable to deploy one type of
container per architecture element present in the
application (e.g. application server, web front-end server,
message broker). As stated earlier, containers cannot
make any assumptions about the location of other
containers they depend on. The hosting cloud
environment is the one in charge of orchestrating
deployment and only it knows where each container is
actually located. As a result, cloud hosting platforms tend
to group distinct types of containers into services.
Services declare a known ingress point, from which
requests are then dispatched to individual containers
fulfilling the same function [12]. This allows containers to
be added, destroyed or upgraded without any loss of
service, and dependent containers always know how to
obtain service. Furthermore, if the service implementation
is stateless or capable of clustering, such an indirection
can transparently support load-balancing and circuit
breaking which further contributes to the robustness of the
overall application.

Access to non-cloud based resources also relies on
service definitions (typically through a known network
address). In that case however, advanced features such as
load-balancing or health monitoring cannot be provided
by the cloud itself.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL01

Software Technology Evolution
THBPL01

1105

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 1: C2MON general architecture.

C2MON TECHNOLOGY STACK

Using C2MON and the CERN cloud infrastructure as a
case study, let us consider each of its constituting
elements before evaluating how suitable they are for
cloud deployment.

Figure 1 presents the general C2MON architecture.

The C2MON architecture relies on the following
majors components :

· ActiveMQ Message Brokers

· Clustered caching

· DAQ processes

· Configuration persistence and archiving

· Client interfaces

ActiveMQ Message Brokers

ActiveMQ is a message broker software. C2MON uses
ActiveMQ brokers for all its message exchanges (with the
exception of web broadcasting, which relies on the cloud-
enabled Atmosphere framework). ActiveMQ is a robust
and widely used messaging service. Its implementation
however is synchronous, by opposition to asynchronous
messaging facilities such as Apache Kafka [13], thereby
limiting its general performance. The ActiveMQ project
was introduced in 2001 and its architecture is not
currently a natural fit for a cloud deployment in the
CERN cloud environment : It only supports cluster
member auto-discovery via multicast, which is not
allowed in the CERN Openshift infrastructure, and its
configuration relies on file system resources and system

properties, which as explained in section "Add support for
external configuration", reduces its scalability
opportunities.

Another important limitation of ActiveMQ is that it
relies primarily on TCP communications through well-
known ports, which are inapplicable in a cloud
environment, where hostnames and ports cannot be relied
upon. ActiveMQ supports other transport protocols such
as HTTP, but tests proved that this implementation is
incompatible with high-availability proxies such as
HAProxy - as long running DAQ sessions eventually
cause HAProxy to run out of memory.

Clustered Caching

C2MON uses EhCache and Terracotta to maximize its
availability and performance. Similarly to ActiveMQ,
Terracotta does not support cluster auto-discovery - it
relies on hostnames or IP addresses, both inapplicable in a
cloud environment. Redundant terracotta can however be
deployed by declaring one cloud service per server, with
the obvious consequence that such a setup would have to
be scaled up manually.

DAQ Processes

DAQ processes are configured via property files and
environment variables. They do not support redundancy
or clustering, deploying them in a swarm would therefore
bring no benefit.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL01

THBPL01
1106

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Figure 2: C2MON deployment over the CERN cloud infrastructure.

Configuration Persistence and Archiving

C2MON can archive data to ElasticSearch or an Oracle
or MySQL database. It also persists its runtime
configuration to a relation database such as Oracle or
MySQL. CERN already provides a high-availability
ElasticSearch cluster service, as well as a database on
demand service that supports MySQL and Oracle. In the
case of an environment were neither would be provided,
new high-availability database implementations such as
CockroachDB that is fully compatible with PostgresDB is
an ideal candidate to move relational databases to a cloud
environment. In our case, this option was not explored
due to lack of resources.

Client Interfaces

C2MON can expose its data to users through two
mechanisms :

· the Web UI, which is an administrative interface to

C2MON internals. Not destined for end-users, it is
an essential tool to monitor a C2MON cluster. It
relies on a stateless application server, requires little
to no configuration (since it merely reflects the one
contained in its C2MON cluster) and is an ideal
candidate for cloud deployment.

· the WebSocket client extension which provides

scalable streaming support for end-user web
interfaces. Based on the Atmosphere framework and
compatible with numerous clustering back-ends, it is
also ideal for cloud deployment.

Now that we have reviewed each architectural element,
we can review our actual implementation in the CERN
environment.

CLOUD MIGRATION RESULTS

Figure 2 presents the final C2MON cloud deployment
as performed over the CERN cloud infrastructure. The
CERN cloud offers, amongst others, two implementations
particularly suited for C2MON deployments : Openshift
and Openstack Magnum [14].

Openshift, as implemented at CERN, is aimed at web
hosting. All incoming traffic is handled by HAProxy, a
high-availability load balancer that also prevents other
types of trafic. As explained in the “ActiveMQ Message
Brokers” section, the ActiveMQ HTTP transport is ill-
suited for long-running sessions and causes HAProxy to
run out of memory.

The Openstack Magnum hosting infrastructure on the
other hand supports general purpose cloud hosting via the
Docker swarm [14] technology, which allows TCP traffic
and well-known ports and services, making it possible to
deploy C2MON server instances, albeit without any
support for high-availability and load balancing.

Other elements such as the C2MON Atmosphere
service or the C2MON Web UI service are ideally suited
for Openshift, supporting rolling upgrades and automated
deployments out of the box.

Migrating existing applications to make the best out of
a cloud environment, if not effortless, is nevertheless
possible with the help of a suitable build and deployment
infrastructure, and provided enough attention is brought to
deployment specificities, security requirements and load
balancing constraints imposed by the hosting cloud.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL01

Software Technology Evolution
THBPL01

1107

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

REFERENCES

[1] M. Braeger et al., “High availability monitoring and
big data : using Java clustering and caching
technologies to meet complex monitoring scenarios”,
MOPPC140, Oct 2013, ICALEPCS’13, San
Francisco, USA.

[2] A. Lossent and A. Peon, “PaaS for web applications
with OpenShift Origin”, Oct 2016, CHEP 2016, San
Francisco, USA.

[3] T. Bell, “Cloud Computing Infrastructure at CERN”,
March 2015, HEPTech conference, Budapest,
Hungary.

[5] J. Hamilton et al., “SCADA Statistics Monitoring
Using the Elastic Stack”, TUPHA034, Oct 2017,
ICALEPCS'17, Barcelona, Spain.

[6] A. Lahiff, “Monitoring with InfluxDB and Grafana”,
Fall 2015, HEPiX Workshop, New York, USA.

[7] S. Picozzi et al., “Source to Image”, in DevOps with
OpenShift, O'Reilly Media, Sebastopol, CA, 2017.

[8] V. Naik, “Architecting for Continuous Delivery”,
Thoughtworks continuous delivery blog, 11 Jan 2016,
https://www.thoughtworks.com/insights/blog/a
rchitecting-continuous-delivery

[9] V. Farcic, “Service Discovery – the key to distributed
services”, in DevOps 2.0 Toolkit, Birmingham, UK,
Packt Publishing, 2016.

[10] J. Carnell, “Controlling your configuration with
Spring cloud configuration server”, in Spring
Microservices in action, Greenwich, USA, Manning
Publications, 2017.

[11] Openshift container platform v3.6 documentation, ,
“Creating images : guidelines”, Red Hat Software,
Raleigh, USA, Jul 2017,
https://docs.openshift.com/container-
platform/3.6/creating_images/guidelines.html

[12] Openshift container platform v3.6 documentation, ,
“Deployment”, Red Hat Software, Raleigh, USA, Jul
2017, https://docs.openshift.com/container-
platform/3.6/creating_images/guidelines.html

[13] D. Vohra, “Messaging and indexing : Apache Kafka”,
in Practical Hadoop Ecosystem, New York, USA,
2016.

[14] S. Trigazis, “OpenStack Magnum and the CERN
cloud”, OpenStack User Group, Paris, France, 2017.

[4] W. Buczak et al., “Diamon2- Improved Monitoring
of CERN’s Accelerator Controls Infrastructure”,
THCOBA03, Oct 2013, ICALEPCS’13, San
Francisco, USA.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL01

THBPL01
1108

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

